Mercurial > pmdwin
comparison fmgen/psg.c @ 0:c55ea9478c80
Hello Gensokyo!
author | Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> |
---|---|
date | Tue, 21 May 2013 10:29:21 +0200 |
parents | |
children | 8ad174416431 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:c55ea9478c80 |
---|---|
1 // FIXME: move ugly-ass legalese somewhere where it won't be seen | |
2 // by anyone other than lawyers. (/dev/null would be ideal but sadly | |
3 // we live in an imperfect world). | |
4 /* Copyright (c) 2012/2013, Peter Barfuss | |
5 All rights reserved. | |
6 | |
7 Redistribution and use in source and binary forms, with or without | |
8 modification, are permitted provided that the following conditions are met: | |
9 | |
10 1. Redistributions of source code must retain the above copyright notice, this | |
11 list of conditions and the following disclaimer. | |
12 2. Redistributions in binary form must reproduce the above copyright notice, | |
13 this list of conditions and the following disclaimer in the documentation | |
14 and/or other materials provided with the distribution. | |
15 | |
16 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
17 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
18 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
19 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR | |
20 ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
21 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
22 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
23 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
25 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ | |
26 | |
27 // Quick, somewhat hacky PSG implementation. Seems to work fine in most cases. | |
28 // Known bugs: volume *may* still be off for a lot of samples. Importantly, | |
29 // waveform volume is too quiet but setting it at the correct volume makes | |
30 // the noise volume too loud and vice-versa. I *think* what I have currently | |
31 // is mostly correct (I'm basing this mostly on how good Strawberry Crisis | |
32 // sounds with the given settings), but it's possible that more fine-tuning | |
33 // is needed. Apart from that, this is probably the sketchiest part of all | |
34 // of my emulator code, but then again there's a bit-exact VHDL core of | |
35 // the YM2149F/AY-3-8910, so while I do want to make this as good | |
36 // as the code in opna.c, it's the lowest-priority of all of the code here. | |
37 // --bofh | |
38 #include <stdint.h> | |
39 #include <stdlib.h> | |
40 #include <string.h> | |
41 #include <math.h> | |
42 #include <unistd.h> | |
43 #include "op.h" | |
44 #include "psg.h" | |
45 #define Max(a,b) ((a>b)?a:b) | |
46 #define Min(a,b) ((a<b)?a:b) | |
47 | |
48 // --------------------------------------------------------------------------- | |
49 // テーブル | |
50 // | |
51 int EmitTable[0x20] = { -1, }; | |
52 uint enveloptable[16][64] = { 0, }; | |
53 | |
54 // --------------------------------------------------------------------------- | |
55 // PSG reset to power-on defaults | |
56 // | |
57 void PSGReset(PSG *psg) | |
58 { | |
59 int i; | |
60 for (i=0; i<14; i++) | |
61 PSGSetReg(psg, i, 0); | |
62 PSGSetReg(psg, 7, 0xff); | |
63 PSGSetReg(psg, 14, 0xff); | |
64 PSGSetReg(psg, 15, 0xff); | |
65 } | |
66 | |
67 // --------------------------------------------------------------------------- | |
68 // This code is strongly inspired by some random PSG emulator code I found, | |
69 // and is probably not the optimal way to define periods. It *is* at least | |
70 // among the fastest, given that it uses the hilarious hack of using the | |
71 // integer overflow on a 32-bit unsigned integer to compute ""moduli"". | |
72 // | |
73 void PSGSetClock(PSG *psg, uint32_t clock, uint32_t rate) | |
74 { | |
75 psg->tperiodbase = (uint32_t)((1 << toneshift ) / 4.0f * clock / rate); | |
76 psg->eperiodbase = (uint32_t)((1 << envshift ) / 4.0f * clock / rate); | |
77 | |
78 // 各データの更新 | |
79 int tmp; | |
80 tmp = ((psg->reg[0] + psg->reg[1] * 256) & 0xfff); | |
81 psg->speriod[0] = tmp ? psg->tperiodbase / tmp : psg->tperiodbase; | |
82 tmp = ((psg->reg[2] + psg->reg[3] * 256) & 0xfff); | |
83 psg->speriod[1] = tmp ? psg->tperiodbase / tmp : psg->tperiodbase; | |
84 tmp = ((psg->reg[4] + psg->reg[5] * 256) & 0xfff); | |
85 psg->speriod[2] = tmp ? psg->tperiodbase / tmp : psg->tperiodbase; | |
86 tmp = psg->reg[6] & 0x1f; | |
87 psg->nperiod = tmp; | |
88 tmp = ((psg->reg[11] + psg->reg[12] * 256) & 0xffff); | |
89 psg->eperiod = tmp ? psg->eperiodbase / tmp : psg->eperiodbase * 2; | |
90 } | |
91 | |
92 // --------------------------------------------------------------------------- | |
93 // エンベロープ波形テーブル | |
94 // | |
95 static uint8_t table3[4] = { 0, 1, -1, 0 }; | |
96 void MakeEnvelopTable(void) | |
97 { | |
98 // 0 lo 1 up 2 down 3 hi | |
99 static uint8_t table1[16*2] = | |
100 { | |
101 2,0, 2,0, 2,0, 2,0, 1,0, 1,0, 1,0, 1,0, | |
102 2,2, 2,0, 2,1, 2,3, 1,1, 1,3, 1,2, 1,0, | |
103 }; | |
104 int i, j; | |
105 | |
106 if (!enveloptable[0][0]) | |
107 { | |
108 uint* ptr = enveloptable[0]; | |
109 | |
110 for (i=0; i<16*2; i++) | |
111 { | |
112 uint8_t v = ((table1[i] & 0x2) ? 31 : 0); | |
113 | |
114 for (j=0; j<32; j++) | |
115 { | |
116 *ptr++ = EmitTable[v]; | |
117 v += table3[table1[i]]; | |
118 } | |
119 } | |
120 } | |
121 } | |
122 | |
123 // --------------------------------------------------------------------------- | |
124 // Sets the channel output mask for the PSG device. | |
125 // c is a bitvector where the 3 LSBs are set to 0 to disable a given | |
126 // PSG channel and 1 to enable it. | |
127 // TODO: Possibly allow enabling tone/noise output for each channel independently? | |
128 // | |
129 void PSGSetChannelMask(PSG *psg, int c) | |
130 { | |
131 int i; | |
132 psg->mask = c; | |
133 for (i=0; i<3; i++) | |
134 psg->olevel[i] = psg->mask & (1 << i) ? EmitTable[(psg->reg[8+i] & 15) * 2 + 1] : 0; | |
135 } | |
136 | |
137 // --------------------------------------------------------------------------- | |
138 // Sets the PSG volume. It's a fairly standard dB -> internal linear scale | |
139 // conversion, followed by generating a table with volume levels. | |
140 // The "magic number" 1.189207115 is just sqrt(sqrt(2)) | |
141 // TODO: is this table really needed? We have fast floating-point now. | |
142 // | |
143 void SetVolumePSG(PSG *psg, int volume) | |
144 { | |
145 int i; | |
146 float base = 0x4000 / 3.0f * expf((float)M_LN10*(volume / 40.0f)); | |
147 for (i=31; i>=2; i--) | |
148 { | |
149 EmitTable[i] = lrintf(base); | |
150 base /= 1.189207115f; | |
151 } | |
152 EmitTable[1] = 0; | |
153 EmitTable[0] = 0; | |
154 MakeEnvelopTable(); | |
155 | |
156 PSGSetChannelMask(psg, psg->mask); | |
157 } | |
158 | |
159 // --------------------------------------------------------------------------- | |
160 // PSG register set routine. Mostly just what you'd expect from reading the manual. | |
161 // Fairly boring code overall. regnum can be 0 - 15, data can be 0x00 - 0xFF. | |
162 // (This should not be surprising - the YM2149F *did* use an 8-bit bus, after all). | |
163 // Interesting quirk: the task of register 7 (channel enable/disable) is basically | |
164 // entirely duplicated by other registers, to the point where you can basically | |
165 // just ignore any writes to register 7 entirely. I save it here in case some | |
166 // braindead routine wants to read its value and do something based on that | |
167 // (Another curiosity: register 7 on the PSG appears to be the only register | |
168 // between *both* the OPNA and the PSG which is actually *read from* by | |
169 // pmdwin.cpp and not just written to. Amusingly enough, the only reason | |
170 // that it is ever read is so that it can then OR something with what it just read | |
171 // and then write that back to register 7. Hilarity). | |
172 // HACK ALERT: The output levels for channels 0 and 1 are increased by a factor of 4 | |
173 // to make them match the actual chip in loudness, but without causing the noise channel | |
174 // to overtake everything in intensity. This is almost certainly wrong, and moreover | |
175 // it assumes that channel 2 will be playing back Speak Board effects which usually means | |
176 // drum kit only (for the most part, at least), and not being used as a separate tonal | |
177 // channel in its own right. To the best of my knowledge, this does hold for all of ZUN's | |
178 // songs, however, once you step outside that set of music, it's trivial to find | |
179 // all sorts of counterexamples to that assumption. Therefore, this should be fixed ASAP. | |
180 // | |
181 void PSGSetReg(PSG *psg, uint8_t regnum, uint8_t data) | |
182 { | |
183 if (regnum < 0x10) | |
184 { | |
185 psg->reg[regnum] = data; | |
186 switch (regnum) | |
187 { | |
188 int tmp; | |
189 | |
190 case 0: // ChA Fine Tune | |
191 case 1: // ChA Coarse Tune | |
192 tmp = ((psg->reg[0] + psg->reg[1] * 256) & 0xfff); | |
193 psg->speriod[0] = tmp ? psg->tperiodbase / tmp : psg->tperiodbase; | |
194 break; | |
195 | |
196 case 2: // ChB Fine Tune | |
197 case 3: // ChB Coarse Tune | |
198 tmp = ((psg->reg[2] + psg->reg[3] * 256) & 0xfff); | |
199 psg->speriod[1] = tmp ? psg->tperiodbase / tmp : psg->tperiodbase; | |
200 break; | |
201 | |
202 case 4: // ChC Fine Tune | |
203 case 5: // ChC Coarse Tune | |
204 tmp = ((psg->reg[4] + psg->reg[5] * 256) & 0xfff); | |
205 psg->speriod[2] = tmp ? psg->tperiodbase / tmp : psg->tperiodbase; | |
206 break; | |
207 | |
208 case 6: // Noise generator control | |
209 data &= 0x1f; | |
210 psg->nperiod = data; | |
211 break; | |
212 | |
213 case 8: | |
214 psg->olevel[0] = psg->mask & 1 ? EmitTable[(data & 15) * 2 + 1] : 0; | |
215 break; | |
216 | |
217 case 9: | |
218 psg->olevel[1] = psg->mask & 2 ? EmitTable[(data & 15) * 2 + 1] : 0; | |
219 break; | |
220 | |
221 case 10: | |
222 psg->olevel[2] = psg->mask & 4 ? EmitTable[(data & 15) * 2 + 1] : 0; | |
223 break; | |
224 | |
225 case 11: // Envelope period | |
226 case 12: | |
227 tmp = ((psg->reg[11] + psg->reg[12] * 256) & 0xffff); | |
228 psg->eperiod = tmp ? psg->eperiodbase / tmp : psg->eperiodbase * 2; | |
229 break; | |
230 | |
231 case 13: // Envelope shape | |
232 psg->ecount = 0; | |
233 psg->envelop = enveloptable[data & 15]; | |
234 break; | |
235 } | |
236 } | |
237 } | |
238 | |
239 // --------------------------------------------------------------------------- | |
240 // Init code. Set volume to 0, reset the chip, enable all channels, seed the RNG. | |
241 // RNG seed lifted from MAME's YM2149F emulation routine, appears to be correct. | |
242 // | |
243 void PSGInit(PSG *psg) | |
244 { | |
245 SetVolumePSG(psg, 0); | |
246 psg->rng = 14231; | |
247 psg->ncount = 0; | |
248 PSGReset(psg); | |
249 psg->mask = 0x3f; | |
250 } | |
251 | |
252 // --------------------------------------------------------------------------- | |
253 // The main output routine for the PSG emulation. | |
254 // dest should be an array of size nsamples, and of type Sample | |
255 // (one of int16_t, int32_t or float - any will work here without causing | |
256 // clipping/precision problems). | |
257 // Everything is implemented using some form of fixed-point arithmetic | |
258 // that currently needs no more than 32-bits for its implementation, | |
259 // but I'm pretty certain that you can get by with much less than that | |
260 // and still have mostly correct-to-fully-correct emulation. | |
261 // | |
262 // TODO: In the future, test the veracity of the above statement. Moreover, | |
263 // if it turns out to be correct, rewrite this routine to not use more than | |
264 // the required precision. This is irrelevant for any PC newer than, well, | |
265 // a 386DX/68040, but important for efficient hardware implementation. | |
266 // | |
267 void PSGMix(PSG *psg, Sample* dest, uint32_t nsamples) | |
268 { | |
269 uint8_t chenable[3]; | |
270 uint8_t r7 = ~psg->reg[7]; | |
271 int i; | |
272 | |
273 if ((r7 & 0x3f) | ((psg->reg[8] | psg->reg[9] | psg->reg[10]) & 0x1f)) { | |
274 chenable[0] = (r7 & 0x01) && (psg->speriod[0] <= (1 << toneshift)); | |
275 chenable[1] = (r7 & 0x02) && (psg->speriod[1] <= (1 << toneshift)); | |
276 chenable[2] = (r7 & 0x04) && (psg->speriod[2] <= (1 << toneshift)); | |
277 | |
278 int noise, sample; | |
279 uint env; | |
280 uint* p1 = ((psg->mask & 1) && (psg->reg[ 8] & 0x10)) ? &env : &psg->olevel[0]; | |
281 uint* p2 = ((psg->mask & 2) && (psg->reg[ 9] & 0x10)) ? &env : &psg->olevel[1]; | |
282 uint* p3 = ((psg->mask & 4) && (psg->reg[10] & 0x10)) ? &env : &psg->olevel[2]; | |
283 #define SCOUNT(ch) (psg->scount[ch] >> toneshift) | |
284 | |
285 if (p1 != &env && p2 != &env && p3 != &env) { | |
286 // ノイズ有り | |
287 for (i=0; i<nsamples; i++) { | |
288 psg->ncount++; | |
289 if(psg->ncount >= psg->nperiod) { | |
290 if(psg->rng & 1) | |
291 psg->rng ^= 0x24000; | |
292 psg->rng >>= 1; | |
293 psg->ncount = 0; | |
294 } | |
295 noise = (psg->rng & 1); | |
296 sample = 0; | |
297 { | |
298 int x, y, z; | |
299 x = ((SCOUNT(0) & chenable[0]) | ((r7 >> 3) & noise)) - 1; // 0 or -1 | |
300 sample += (psg->olevel[0] + x) ^ x; | |
301 psg->scount[0] += psg->speriod[0]; | |
302 y = ((SCOUNT(1) & chenable[1]) | ((r7 >> 4) & noise)) - 1; | |
303 sample += (psg->olevel[1] + y) ^ y; | |
304 psg->scount[1] += psg->speriod[1]; | |
305 z = ((SCOUNT(2) & chenable[2]) | ((r7 >> 5) & noise)) - 1; | |
306 sample += (psg->olevel[2] + z) ^ z; | |
307 psg->scount[2] += psg->speriod[2]; | |
308 } | |
309 dest[0] += sample; | |
310 dest += 1; | |
311 } | |
312 | |
313 // エンベロープの計算をさぼった帳尻あわせ | |
314 psg->ecount = (psg->ecount >> 8) + (psg->eperiod >> 8) * nsamples; | |
315 if (psg->ecount >= (1 << (envshift+6-8))) { | |
316 if ((psg->reg[0x0d] & 0x0b) != 0x0a) | |
317 psg->ecount |= (1 << (envshift+5-8)); | |
318 psg->ecount &= (1 << (envshift+6-8)) - 1; | |
319 } | |
320 psg->ecount <<= 8; | |
321 } else { | |
322 // エンベロープあり | |
323 for (i=0; i<nsamples; i++) { | |
324 psg->ncount++; | |
325 if(psg->ncount >= psg->nperiod) { | |
326 if(psg->rng & 1) | |
327 psg->rng ^= 0x24000; | |
328 psg->rng >>= 1; | |
329 psg->ncount = 0; | |
330 } | |
331 noise = (psg->rng & 1); | |
332 sample = 0; | |
333 { | |
334 env = psg->envelop[psg->ecount >> envshift]; | |
335 psg->ecount += psg->eperiod; | |
336 if (psg->ecount >= (1 << (envshift+6))) { | |
337 if ((psg->reg[0x0d] & 0x0b) != 0x0a) | |
338 psg->ecount |= (1 << (envshift+5)); | |
339 psg->ecount &= (1 << (envshift+6)) - 1; | |
340 } | |
341 int x, y, z; | |
342 x = ((SCOUNT(0) & chenable[0]) | ((r7 >> 3) & noise)) - 1; // 0 or -1 | |
343 sample += (*p1 + x) ^ x; | |
344 psg->scount[0] += psg->speriod[0]; | |
345 y = ((SCOUNT(1) & chenable[1]) | ((r7 >> 4) & noise)) - 1; | |
346 sample += (*p2 + y) ^ y; | |
347 psg->scount[1] += psg->speriod[1]; | |
348 z = ((SCOUNT(2) & chenable[2]) | ((r7 >> 5) & noise)) - 1; | |
349 sample += (*p3 + z) ^ z; | |
350 psg->scount[2] += psg->speriod[2]; | |
351 } | |
352 dest[0] += sample; | |
353 dest += 1; | |
354 } | |
355 } | |
356 } | |
357 } | |
358 |