Mercurial > pmdwin
view lfg.c @ 6:da588a3fb3cc
Make pmdwin a dynamically linked executable.
author | Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> |
---|---|
date | Mon, 08 Sep 2014 17:15:41 +0200 |
parents | c55ea9478c80 |
children |
line wrap: on
line source
/*! \file * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. */ #include <stdint.h> #include <string.h> typedef struct { uint32_t buf[4]; uint32_t bytes[2]; uint32_t in[16]; } MD5_CTX; #define ROTATE(a,n) ({ register unsigned int ret; \ __asm__ volatile("roll %%cl,%0" \ : "=r"(ret) \ : "c"(n), "0"((unsigned int)(a)) \ : "cc"); ret; }) /*! * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ void MD5Init(MD5_CTX *ctx) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bytes[0] = 0; ctx->bytes[1] = 0; } /*@{*/ /*! The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /*@}*/ /*! This is the central step in the MD5 algorithm. */ #define MD5STEP(f,w,x,y,z,in,s) \ (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x) /*! * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ static void transform(uint32_t buf[4], uint32_t const in[16]) { register uint32_t a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } /*! * Update context to reflect the concatenation of another buffer full * of bytes. */ void MD5Update(MD5_CTX *ctx, const unsigned char *buf, unsigned int len) { uint32_t t; /* Update byte count */ t = ctx->bytes[0]; if ((ctx->bytes[0] = t + len) < t) ctx->bytes[1]++; /* Carry from low to high */ t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */ if (t > len) { memcpy((unsigned char *)ctx->in + 64 - t, buf, len); return; } /* First chunk is an odd size */ memcpy((unsigned char *)ctx->in + 64 - t, buf, t); transform(ctx->buf, ctx->in); buf += t; len -= t; /* Process data in 64-byte chunks */ while (len >= 64) { memcpy(ctx->in, buf, 64); transform(ctx->buf, ctx->in); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); } static inline void small_memset(void *addr, int c, size_t size) { __asm__ volatile("xor %%al, %%al \t\n" "rep; stosb \t\n" :"+D"(addr) :"c"(size) :"%al"); } /*! * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ void MD5Final(MD5_CTX *ctx, unsigned char *digest) { int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ unsigned char *p = (unsigned char *)ctx->in + count; /* Set the first char of padding to 0x80. There is always room. */ *p++ = 0x80; /* Bytes of padding needed to make 56 bytes (-8..55) */ count = 56 - 1 - count; if (count < 0) { /* Padding forces an extra block */ small_memset(p, 0, count + 8); transform(ctx->buf, ctx->in); p = (unsigned char *)ctx->in; count = 56; } small_memset(p, 0, count); /* Append length in bits and transform */ ctx->in[14] = ctx->bytes[0] << 3; ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; transform(ctx->buf, ctx->in); memcpy(digest, ctx->buf, 16); } typedef struct { unsigned int state[64]; unsigned int index; } AVLFG; static AVLFG c; void lfg_srand(unsigned int seed){ uint32_t i, tmp[4]={0}; MD5_CTX ctx; for(i=0; i<64; i+=4){ tmp[0]=seed; tmp[3]=i; MD5Init(&ctx); MD5Update(&ctx, (uint8_t*)tmp, 16); MD5Final(&ctx, (uint8_t*)tmp); c.state[i ]= tmp[0]; c.state[i+1]= tmp[1]; c.state[i+2]= tmp[2]; c.state[i+3]= tmp[3]; } c.index=0; } /** * Get the next random unsigned 32-bit number using an ALFG. */ unsigned int lfg_rand(void){ c.state[c.index & 63] = c.state[(c.index-24) & 63] + c.state[(c.index-55) & 63]; return c.state[c.index++ & 63]; } #ifdef TEST #include <stdio.h> void av_md5_sum(uint8_t *dst, const uint8_t *src, const int len) { MD5_CTX ctx; MD5Init(&ctx); MD5Update(&ctx, src, len); MD5Final(&ctx, dst); } static void print_md5(uint8_t *md5) { int i; for (i = 0; i < 16; i++) printf("%02x", md5[i]); printf("\n"); } int main(void){ uint8_t md5val[16]; int i; uint8_t in[1000]; for (i = 0; i < 1000; i++) in[i] = i * i; av_md5_sum(md5val, in, 1000); print_md5(md5val); av_md5_sum(md5val, in, 63); print_md5(md5val); av_md5_sum(md5val, in, 64); print_md5(md5val); av_md5_sum(md5val, in, 65); print_md5(md5val); for (i = 0; i < 1000; i++) in[i] = i % 127; av_md5_sum(md5val, in, 999); print_md5(md5val); return 0; } #endif