comparison examples/stdrenderer.rs @ 679:6020e33d4fc4

Implement a .std renderer, and its associated VM.
author Emmanuel Gil Peyrot <linkmauve@linkmauve.fr>
date Fri, 16 Aug 2019 13:40:38 +0200
parents
children ef2dbd676a91
comparison
equal deleted inserted replaced
678:1d81a449c436 679:6020e33d4fc4
1 use image::GenericImageView;
2 use luminance::context::GraphicsContext;
3 use luminance::framebuffer::Framebuffer;
4 use luminance::pipeline::BoundTexture;
5 use luminance::pixel::{NormRGB8UI, Floating};
6 use luminance::render_state::RenderState;
7 use luminance::shader::program::{Program, Uniform};
8 use luminance::tess::{Mode, TessBuilder, TessSliceIndex};
9 use luminance::texture::{Dim2, Flat, Sampler, Texture, GenMipmaps};
10 use luminance_derive::{Semantics, Vertex, UniformInterface};
11 use luminance_glfw::event::{Action, Key, WindowEvent};
12 use luminance_glfw::surface::{GlfwSurface, Surface, WindowDim, WindowOpt};
13 use touhou::th06::anm0::Anm0;
14 use touhou::th06::anm0_vm::{AnmRunner, Sprite, Vertex as FakeVertex};
15 use touhou::th06::std::{Stage, Position};
16 use touhou::th06::std_vm::StageRunner;
17 use touhou::util::prng::Prng;
18 use touhou::util::math::perspective;
19 use std::cell::RefCell;
20 use std::fs::File;
21 use std::io::{BufReader, Read};
22 use std::rc::Rc;
23 use std::env;
24 use std::path::Path;
25
26 const VS: &str = r#"
27 in ivec3 in_position;
28 in vec2 in_texcoord;
29 in uvec4 in_color;
30
31 uniform mat4 mvp;
32 uniform vec3 instance_position;
33
34 out vec2 texcoord;
35 out vec4 color;
36
37 void main()
38 {
39 vec3 position = vec3(in_position) + instance_position;
40 gl_Position = mvp * vec4(position, 1.0);
41 texcoord = vec2(in_texcoord);
42
43 // Normalized from the u8 being passed.
44 color = vec4(in_color) / 255.;
45 }
46 "#;
47
48 const FS: &str = r#"
49 in vec2 texcoord;
50 in vec4 color;
51
52 uniform sampler2D color_map;
53 uniform float fog_scale;
54 uniform float fog_end;
55 uniform vec4 fog_color;
56
57 out vec4 frag_color;
58
59 void main()
60 {
61 vec4 temp_color = texture(color_map, texcoord) * color;
62 float depth = gl_FragCoord.z / gl_FragCoord.w;
63 float fog_density = clamp((fog_end - depth) * fog_scale, 0.0, 1.0);
64 frag_color = vec4(mix(fog_color, temp_color, fog_density).rgb, temp_color.a);
65 }
66 "#;
67
68 #[derive(Clone, Copy, Debug, Eq, PartialEq, Semantics)]
69 pub enum Semantics {
70 #[sem(name = "in_position", repr = "[i16; 3]", wrapper = "VertexPosition")]
71 Position,
72
73 #[sem(name = "in_texcoord", repr = "[f32; 2]", wrapper = "VertexTexcoord")]
74 Texcoord,
75
76 #[sem(name = "in_color", repr = "[u8; 4]", wrapper = "VertexColor")]
77 Color,
78 }
79
80 #[repr(C)]
81 #[derive(Clone, Copy, Debug, PartialEq, Vertex)]
82 #[vertex(sem = "Semantics")]
83 struct Vertex {
84 pos: VertexPosition,
85 uv: VertexTexcoord,
86 rgba: VertexColor,
87 }
88
89 #[derive(UniformInterface)]
90 struct ShaderInterface {
91 // the 'static lifetime acts as “anything” here
92 color_map: Uniform<&'static BoundTexture<'static, Flat, Dim2, Floating>>,
93
94 #[uniform(name = "mvp")]
95 mvp: Uniform<[[f32; 4]; 4]>,
96
97 #[uniform(name = "instance_position")]
98 instance_position: Uniform<[f32; 3]>,
99
100 #[uniform(name = "fog_scale")]
101 fog_scale: Uniform<f32>,
102
103 #[uniform(name = "fog_end")]
104 fog_end: Uniform<f32>,
105
106 #[uniform(name = "fog_color")]
107 fog_color: Uniform<[f32; 4]>,
108 }
109
110 fn main() {
111 // Parse arguments.
112 let args: Vec<_> = env::args().collect();
113 if args.len() != 4 {
114 eprintln!("Usage: {} <STD file> <ANM file> <PNG file>", args[0]);
115 return;
116 }
117 let std_filename = &args[1];
118 let anm_filename = &args[2];
119 let png_filename = &args[3];
120
121 // Open the STD file.
122 let file = File::open(std_filename).unwrap();
123 let mut file = BufReader::new(file);
124 let mut buf = vec![];
125 file.read_to_end(&mut buf).unwrap();
126 let (_, stage) = Stage::from_slice(&buf).unwrap();
127
128 // Open the ANM file.
129 let file = File::open(anm_filename).unwrap();
130 let mut file = BufReader::new(file);
131 let mut buf = vec![];
132 file.read_to_end(&mut buf).unwrap();
133 let anm0 = Anm0::from_slice(&buf).unwrap();
134
135 // TODO: seed this PRNG with a valid seed.
136 let prng = Rc::new(RefCell::new(Prng::new(0)));
137
138 assert_eq!(std::mem::size_of::<Vertex>(), std::mem::size_of::<FakeVertex>());
139 let mut vertices: Vec<Vertex> = vec![];
140 let mut indices = vec![];
141
142 {
143 for model in stage.models.iter() {
144 let begin = vertices.len();
145 for quad in model.quads.iter() {
146 let Position { x, y, z } = quad.pos;
147
148 // Create the AnmRunner from the ANM and the sprite.
149 let sprite = Rc::new(RefCell::new(Sprite::new()));
150 let _anm_runner = AnmRunner::new(&anm0, quad.anm_script as u8, sprite.clone(), Rc::downgrade(&prng), 0);
151 let mut new_vertices: [Vertex; 6] = unsafe { std::mem::uninitialized() };
152 fill_vertices(sprite.clone(), &mut new_vertices, x, y, z);
153 new_vertices[4] = new_vertices[0];
154 new_vertices[5] = new_vertices[2];
155 vertices.extend(&new_vertices);
156 }
157 let end = vertices.len();
158 indices.push((begin, end));
159 }
160 }
161
162 let mut stage_runner = StageRunner::new(Rc::new(RefCell::new(stage)));
163
164 let mut surface = GlfwSurface::new(WindowDim::Windowed(384, 448), "Touhou", WindowOpt::default()).unwrap();
165
166 // Open the image atlas matching this ANM.
167 let tex = load_from_disk(&mut surface, Path::new(png_filename)).expect("texture loading");
168
169 // set the uniform interface to our type so that we can read textures from the shader
170 let (program, _) =
171 Program::<Semantics, (), ShaderInterface>::from_strings(None, VS, None, FS).expect("program creation");
172
173 let tess = TessBuilder::new(&mut surface)
174 .add_vertices(vertices)
175 .set_mode(Mode::Triangle)
176 .build()
177 .unwrap();
178
179 let mut back_buffer = Framebuffer::back_buffer(surface.size());
180
181 'app: loop {
182 for event in surface.poll_events() {
183 match event {
184 WindowEvent::Close | WindowEvent::Key(Key::Escape, _, Action::Release, _) => break 'app,
185
186 WindowEvent::FramebufferSize(width, height) => {
187 back_buffer = Framebuffer::back_buffer([width as u32, height as u32]);
188 }
189
190 _ => (),
191 }
192 }
193
194 {
195 stage_runner.run_frame();
196 //let sprites = stage.get_sprites();
197 //fill_vertices_ptr(sprites, slice.as_mut_ptr());
198 }
199
200 // here, we need to bind the pipeline variable; it will enable us to bind the texture to the GPU
201 // and use it in the shader
202 surface
203 .pipeline_builder()
204 .pipeline(&back_buffer, [0., 0., 0., 0.], |pipeline, shd_gate| {
205 // bind our fancy texture to the GPU: it gives us a bound texture we can use with the shader
206 let bound_tex = pipeline.bind_texture(&tex);
207
208 shd_gate.shade(&program, |rdr_gate, iface| {
209 // update the texture; strictly speaking, this update doesn’t do much: it just tells the GPU
210 // to use the texture passed as argument (no allocation or copy is performed)
211 iface.color_map.update(&bound_tex);
212
213 let proj = perspective(0.5235987755982988, 384. / 448., 101010101./2010101., 101010101./10101.);
214 let model_view = stage_runner.get_model_view();
215 let mvp = model_view * proj;
216 // TODO: check how to pass by reference.
217 iface.mvp.update(*mvp.borrow_inner());
218
219 let near = stage_runner.fog_near - 101010101. / 2010101.;
220 let far = stage_runner.fog_far - 101010101. / 2010101.;
221 iface.fog_color.update(stage_runner.fog_color);
222 iface.fog_scale.update(1. / (far - near));
223 iface.fog_end.update(far);
224
225 let stage = stage_runner.stage.borrow();
226 for instance in stage.instances.iter() {
227 iface.instance_position.update([instance.pos.x, instance.pos.y, instance.pos.z]);
228
229 rdr_gate.render(RenderState::default(), |tess_gate| {
230 let (begin, end) = indices[instance.id as usize];
231 tess_gate.render(&mut surface, tess.slice(begin..end));
232 });
233 }
234 });
235 });
236
237 surface.swap_buffers();
238 }
239 }
240
241 fn fill_vertices(sprite: Rc<RefCell<Sprite>>, vertices: &mut [Vertex; 6], x: f32, y: f32, z: f32) {
242 let mut fake_vertices = unsafe { std::mem::transmute::<&mut [Vertex; 6], &mut [FakeVertex; 4]>(vertices) };
243 let sprite = sprite.borrow();
244 sprite.fill_vertices(&mut fake_vertices, x, y, z);
245 }
246
247 fn load_from_disk(surface: &mut GlfwSurface, path: &Path) -> Option<Texture<Flat, Dim2, NormRGB8UI>> {
248 // load the texture into memory as a whole bloc (i.e. no streaming)
249 match image::open(&path) {
250 Ok(img) => {
251 let (width, height) = img.dimensions();
252 let texels = img
253 .pixels()
254 .map(|(_x, _y, rgb)| (rgb[0], rgb[1], rgb[2]))
255 .collect::<Vec<_>>();
256
257 // create the luminance texture; the third argument is the number of mipmaps we want (leave it
258 // to 0 for now) and the latest is a the sampler to use when sampling the texels in the
259 // shader (we’ll just use the default one)
260 let tex =
261 Texture::new(surface, [width, height], 0, &Sampler::default()).expect("luminance texture creation");
262
263 // the first argument disables mipmap generation (we don’t care so far)
264 tex.upload(GenMipmaps::No, &texels);
265
266 Some(tex)
267 }
268
269 Err(e) => {
270 eprintln!("cannot open image {}: {}", path.display(), e);
271 None
272 }
273 }
274 }