Mercurial > touhou
diff pytouhou/utils/maths.pyx @ 412:5fe6cd6ceb48
Refactor the maths functions out of Renderer.
author | Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> |
---|---|
date | Wed, 12 Jun 2013 18:30:08 +0200 |
parents | |
children | 878273a984c4 |
line wrap: on
line diff
new file mode 100644 --- /dev/null +++ b/pytouhou/utils/maths.pyx @@ -0,0 +1,73 @@ +# -*- encoding: utf-8 -*- +## +## Copyright (C) 2013 Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> +## +## This program is free software; you can redistribute it and/or modify +## it under the terms of the GNU General Public License as published +## by the Free Software Foundation; version 3 only. +## +## This program is distributed in the hope that it will be useful, +## but WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +## GNU General Public License for more details. +## + +from math import radians +from libc.math cimport tan + +from .matrix cimport Matrix +from .vector import Vector, normalize, cross, dot + + +cpdef ortho_2d(left, right, bottom, top): + mat = Matrix() + data = mat.data + data[0][0] = 2 / (right - left) + data[1][1] = 2 / (top - bottom) + data[2][2] = -1 + data[3][0] = -(right + left) / (right - left) + data[3][1] = -(top + bottom) / (top - bottom) + return mat + + +cpdef look_at(eye, center, up): + eye = Vector(eye) + center = Vector(center) + up = Vector(up) + + f = normalize(center - eye) + u = normalize(up) + s = normalize(cross(f, u)) + u = cross(s, f) + + return Matrix([[s[0], u[0], -f[0], 0], + [s[1], u[1], -f[1], 0], + [s[2], u[2], -f[2], 0], + [-dot(s, eye), -dot(u, eye), dot(f, eye), 1]]) + + +cpdef perspective(fovy, aspect, z_near, z_far): + top = tan(radians(fovy / 2)) * z_near + bottom = -top + left = -top * aspect + right = top * aspect + + mat = Matrix() + data = mat.data + data[0][0] = (2 * z_near) / (right - left) + data[1][1] = (2 * z_near) / (top - bottom) + data[2][2] = -(z_far + z_near) / (z_far - z_near) + data[2][3] = -1 + data[3][2] = -(2 * z_far * z_near) / (z_far - z_near) + data[3][3] = 0 + return mat + + +cpdef setup_camera(dx, dy, dz): + # Some explanations on the magic constants: + # 192. = 384. / 2. = width / 2. + # 224. = 448. / 2. = height / 2. + # 835.979370 = 224./math.tan(math.radians(15)) = (height/2.)/math.tan(math.radians(fov/2)) + # This is so that objects on the (O, x, y) plane use pixel coordinates + return look_at((192., 224., - 835.979370 * dz), + (192. + dx, 224. - dy, 0.), (0., -1., 0.))