Mercurial > touhou
view pytouhou/utils/matrix.py @ 130:11ab06f4c4c6
Introduce characters!
author | Thibaut Girka <thib@sitedethib.com> |
---|---|
date | Sat, 10 Sep 2011 22:48:56 +0200 |
parents | d1c82d43bbf3 |
children |
line wrap: on
line source
# -*- encoding: utf-8 -*- ## ## Copyright (C) 2011 Thibaut Girka <thib@sitedethib.com> ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published ## by the Free Software Foundation; version 3 only. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## #TODO: find/learn to use a proper lib from math import sin, cos class Matrix(object): def __init__(self, data=None): self.data = data or [[0] * 4 for i in xrange(4)] def mult(self, other_matrix): d1 = self.data d2 = other_matrix.data return Matrix([[sum(d1[i][a] * d2[a][j] for a in xrange(4)) for j in xrange(4)] for i in xrange(4)]) def flip(self): data = self.data a, b, c, d = data[0] data[0] = [-a, -b, -c, -d] def scale(self, x, y, z): d1 = self.data d1[0] = [a * x for a in d1[0]] d1[1] = [a * y for a in d1[1]] d1[2] = [a * z for a in d1[2]] def scale2d(self, x, y): data = self.data d1a, d1b, d1c, d1d = data[0] d2a, d2b, d2c, d2d = data[1] data[0] = [d1a * x, d1b * x, d1c * x, d1d * x] data[1] = [d2a * y, d2b * y, d2c * y, d2d * y] def translate(self, x, y, z): data = self.data a, b, c = data[3][:3] a, b, c = a * x, b * y, c * z d1a, d1b, d1c, d1d = data[0] d2a, d2b, d2c, d2d = data[1] d3a, d3b, d3c, d3d = data[2] data[0] = [d1a + a, d1b + a, d1c + a, d1d + a] data[1] = [d2a + b, d2b + b, d2c + b, d2d + b] data[2] = [d3a + c, d3b + c, d3c + c, d3d + c] def rotate_x(self, angle): d1 = self.data cos_a = cos(angle) sin_a = sin(angle) d1[1], d1[2] = ([cos_a * d1[1][i] - sin_a * d1[2][i] for i in range(4)], [sin_a * d1[1][i] + cos_a * d1[2][i] for i in range(4)]) def rotate_y(self, angle): d1 = self.data cos_a = cos(angle) sin_a = sin(angle) d1[0], d1[2] = ([cos_a * d1[0][i] + sin_a * d1[2][i] for i in range(4)], [- sin_a * d1[0][i] + cos_a * d1[2][i] for i in range(4)]) def rotate_z(self, angle): d1 = self.data cos_a = cos(angle) sin_a = sin(angle) d1[0], d1[1] = ([cos_a * d1[0][i] - sin_a * d1[1][i] for i in range(4)], [sin_a * d1[0][i] + cos_a * d1[1][i] for i in range(4)]) @classmethod def get_translation_matrix(cls, x, y, z): return cls([[1., 0., 0., x], [0., 1., 0., y], [0., 0., 1., z], [0., 0., 0., 1.]]) @classmethod def get_scaling_matrix(cls, x, y, z): return cls([[x, 0., 0., 0.], [0., y, 0., 0.], [0., 0., z, 0.], [0., 0., 0., 1.]]) @classmethod def get_rotation_matrix(cls, angle, axis): """Only handles axis = x, y or z.""" cos_a = cos(angle) sin_a = sin(angle) if axis == 'x': return Matrix([[ 1., 0., 0., 0.], [ 0., cos_a, -sin_a, 0.], [ 0., sin_a, cos_a, 0.], [ 0., 0., 0., 1.]]) elif axis == 'y': return Matrix([[ cos_a, 0., sin_a, 0.], [ 0., 1., 0., 0.], [-sin_a, 0., cos_a, 0.], [ 0., 0., 0., 1.]]) elif axis == 'z': return Matrix([[ cos_a, -sin_a, 0., 0.], [ sin_a, cos_a, 0., 0.], [ 0., 0., 1., 0.], [ 0., 0., 0., 1.]]) else: raise Exception