Mercurial > touhou
view pytouhou/utils/maths.pyx @ 486:2f53be1b2f60
Merge netplay branch.
author | Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> |
---|---|
date | Fri, 27 Sep 2013 19:01:47 +0200 |
parents | cb5c68598ab0 |
children | 6e3b3d5d4691 |
line wrap: on
line source
# -*- encoding: utf-8 -*- ## ## Copyright (C) 2013 Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published ## by the Free Software Foundation; version 3 only. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## from libc.math cimport tan, M_PI as pi from .vector cimport Vector, normalize, cross, dot cdef double radians(double degrees) nogil: return degrees * pi / 180 cdef Matrix ortho_2d(float left, float right, float bottom, float top): cdef float *data mat = Matrix() data = mat.data data[4*0+0] = 2 / (right - left) data[4*1+1] = 2 / (top - bottom) data[4*2+2] = -1 data[4*3+0] = -(right + left) / (right - left) data[4*3+1] = -(top + bottom) / (top - bottom) return mat cdef Matrix look_at(Vector eye, Vector center, Vector up): f = normalize(center.sub(eye)) u = normalize(up) s = normalize(cross(f, u)) u = cross(s, f) return Matrix([s.x, u.x, -f.x, 0, s.y, u.y, -f.y, 0, s.z, u.z, -f.z, 0, -dot(s, eye), -dot(u, eye), dot(f, eye), 1]) cdef Matrix perspective(float fovy, float aspect, float z_near, float z_far): cdef float *data top = tan(radians(fovy / 2)) * z_near bottom = -top left = -top * aspect right = top * aspect mat = Matrix() data = mat.data data[4*0+0] = (2 * z_near) / (right - left) data[4*1+1] = (2 * z_near) / (top - bottom) data[4*2+2] = -(z_far + z_near) / (z_far - z_near) data[4*2+3] = -1 data[4*3+2] = -(2 * z_far * z_near) / (z_far - z_near) data[4*3+3] = 0 return mat cdef Matrix setup_camera(float dx, float dy, float dz): # Some explanations on the magic constants: # 192. = 384. / 2. = width / 2. # 224. = 448. / 2. = height / 2. # 835.979370 = 224./math.tan(math.radians(15)) = (height/2.)/math.tan(math.radians(fov/2)) # This is so that objects on the (O, x, y) plane use pixel coordinates return look_at(Vector(192., 224., - 835.979370 * dz), Vector(192. + dx, 224. - dy, 0.), Vector(0., -1., 0.))