view pytouhou/utils/matrix.pyx @ 401:3ce4065840e9

Calculate the fog per-fragment and remove the fixed-pipeline glFog* functions; now both vertex shaders are the same.
author Emmanuel Gil Peyrot <linkmauve@linkmauve.fr>
date Thu, 14 Feb 2013 20:07:23 +0100
parents 74471afbac37
children 2428296cccab
line wrap: on
line source

# -*- encoding: utf-8 -*-
##
## Copyright (C) 2011 Thibaut Girka <thib@sitedethib.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published
## by the Free Software Foundation; version 3 only.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##

from libc.math cimport sin, cos
from ctypes import c_float


cdef class Matrix:
    def __init__(Matrix self, data=None):
        self.data = data or [[1, 0, 0, 0],
                             [0, 1, 0, 0],
                             [0, 0, 1, 0],
                             [0, 0, 0, 1]]


    def __getitem__(Matrix self, key):
        return self.data[key]


    def __mul__(Matrix self, Matrix other):
        out = Matrix()
        for i in xrange(4):
            for j in xrange(4):
                out[i][j] = sum(self[i][k] * other[k][j] for k in xrange(4))
        return out


    def get_c_data(Matrix self):
        data = sum(self.data, [])
        return (c_float * 16)(*data)


    cpdef flip(Matrix self):
        data = self.data
        a, b, c, d = data[0]
        data[0] = [-a, -b, -c, -d]


    cpdef scale(Matrix self, x, y, z):
        d1 = self.data
        d1[0] = [a * x for a in d1[0]]
        d1[1] = [a * y for a in d1[1]]
        d1[2] = [a * z for a in d1[2]]


    cpdef scale2d(Matrix self, x, y):
        data = self.data
        d1a, d1b, d1c, d1d = data[0]
        d2a, d2b, d2c, d2d = data[1]
        data[0] = [d1a * x, d1b * x, d1c * x, d1d * x]
        data[1] = [d2a * y, d2b * y, d2c * y, d2d * y]


    cpdef translate(Matrix self, x, y, z):
        data = self.data
        a, b, c = data[3][:3]
        a, b, c = a * x, b * y, c * z
        d1a, d1b, d1c, d1d = data[0]
        d2a, d2b, d2c, d2d = data[1]
        d3a, d3b, d3c, d3d = data[2]
        data[0] = [d1a + a, d1b + a, d1c + a, d1d + a]
        data[1] = [d2a + b, d2b + b, d2c + b, d2d + b]
        data[2] = [d3a + c, d3b + c, d3c + c, d3d + c]


    cpdef rotate_x(Matrix self, angle):
        d1 = self.data
        cos_a = cos(angle)
        sin_a = sin(angle)
        d1[1], d1[2] = ([cos_a * d1[1][i] - sin_a * d1[2][i] for i in range(4)],
                        [sin_a * d1[1][i] + cos_a * d1[2][i] for i in range(4)])


    cpdef rotate_y(Matrix self, angle):
        d1 = self.data
        cos_a = cos(angle)
        sin_a = sin(angle)
        d1[0], d1[2] = ([cos_a * d1[0][i] + sin_a * d1[2][i] for i in range(4)],
                        [- sin_a * d1[0][i] + cos_a * d1[2][i] for i in range(4)])


    cpdef rotate_z(Matrix self, angle):
        d1 = self.data
        cos_a = cos(angle)
        sin_a = sin(angle)
        d1[0], d1[1] = ([cos_a * d1[0][i] - sin_a * d1[1][i] for i in range(4)],
                        [sin_a * d1[0][i] + cos_a * d1[1][i] for i in range(4)])