Mercurial > touhou
view pytouhou/formats/exe.py @ 612:73f134f84c7f
Request a RGB888 context, since SDL2’s default of RGB332 sucks.
On X11/GLX, it will select the first config available, that is the best
one, while on EGL it will iterate over them to select the one closest
to what the application requested.
Of course, anything lower than RGB888 looks bad and we really don’t
want that.
author | Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> |
---|---|
date | Thu, 26 Mar 2015 20:20:37 +0100 |
parents | e15672733c93 |
children | d1f0bb0b7a17 |
line wrap: on
line source
# -*- encoding: utf-8 -*- ## ## Copyright (C) 2011 Thibaut Girka <thib@sitedethib.com> ## Copyright (C) 2011 Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published ## by the Free Software Foundation; version 3 only. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## from copy import copy from struct import Struct, unpack from pytouhou.utils.pe import PEFile from pytouhou.utils.helpers import get_logger logger = get_logger(__name__) SQ2 = 2. ** 0.5 / 2. class InvalidExeException(Exception): pass class Shot(object): def __init__(self): self.interval = 0 self.delay = 0 self.pos = (0., 0.) self.hitbox = (0., 0.) self.angle = 0. self.speed = 0. self.damage = 0 self.orb = 0 self.type = 0 self.sprite = 0 self.unknown1 = None class SHT(object): def __init__(self): #self.unknown1 = None #self.bombs = 0. #self.unknown2 = None self.hitbox = 2. self.graze_hitbox = 21. self.autocollection_speed = 8. self.item_hitbox = 19. # No percentage_of_cherry_loss_on_die self.point_of_collection = 128 #TODO: find the real default. self.horizontal_vertical_speed = 0. self.horizontal_vertical_focused_speed = 0. self.diagonal_speed = 0. self.diagonal_focused_speed = 0. self.shots = {} @classmethod def find_character_defs(cls, pe_file): """Generator returning the possible VA of character definition blocks. Based on knowledge of the structure, it tries to find valid definition blocks without embedding any copyrighted material or hard-coded offsets that would only be useful for a specific build of the game. """ format = Struct('<4f2I') data_section = [section for section in pe_file.sections if section.Name.startswith(b'.data')][0] text_section = [section for section in pe_file.sections if section.Name.startswith(b'.text')][0] data_va = pe_file.image_base + data_section.VirtualAddress data_size = data_section.SizeOfRawData text_va = pe_file.image_base + text_section.VirtualAddress text_size = text_section.SizeOfRawData # Search the whole data segment for 4 successive character definitions for addr in range(data_va, data_va + data_size, 4): for character_id in range(4): pe_file.seek_to_va(addr + character_id * 24) (speed1, speed2, speed3, speed4, ptr1, ptr2) = format.unpack(pe_file.file.read(format.size)) # Check whether the character's speed make sense, # and whether the function pointers point to valid addresses if not (all(0. < x < 10. for x in (speed1, speed2, speed3, speed4)) and speed2 <= speed1 and 0 <= ptr1 - text_va < text_size - 8 and 0 <= ptr2 - text_va < text_size - 8): break # So far, this character definition seems to be valid. # Now, make sure the shoot function wrappers pass valid addresses # Search for the “push” instruction for i in range(20): # Find the “push” instruction pe_file.seek_to_va(ptr1 + i) instr1, shtptr1 = unpack('<BI', pe_file.file.read(5)) pe_file.seek_to_va(ptr2 + i) instr2, shtptr2 = unpack('<BI', pe_file.file.read(5)) if instr1 == 0x68 and instr2 == 0x68 and (0 <= shtptr1 - data_va < data_size - 12 and 0 <= shtptr2 - data_va < data_size - 12): # It is unlikely this character record is *not* valid, but # just to be sure, let's check the first SHT definition. pe_file.seek_to_va(shtptr1) nb_shots, power, shotsptr = unpack('<III', pe_file.file.read(12)) if (0 < nb_shots <= 1000 and 0 <= power < 1000 and 0 <= shotsptr - data_va < data_size - 36*nb_shots): break # Check if everything is fine... if not (0 <= shtptr1 - data_va < data_size - 12 and 0 <= shtptr2 - data_va < data_size - 12 and 0 < nb_shots <= 1000 and 0 <= power < 1000 and 0 <= shotsptr - data_va < data_size - 36*nb_shots): break else: # XXX: Obscure python feature! This only gets executed if the # XXX: loop ended without a break statement. # In our case, it's only executed if all the 4 character # definitions are considered valid. yield addr @classmethod def read(cls, file): pe_file = PEFile(file) data_section = [section for section in pe_file.sections if section.Name.startswith(b'.data')][0] data_va = pe_file.image_base + data_section.VirtualAddress data_size = data_section.SizeOfRawData try: character_records_va = next(cls.find_character_defs(pe_file)) except StopIteration: raise InvalidExeException characters = [] shots_offsets = {} for character in range(4): sht = cls() pe_file.seek_to_va(character_records_va + 6*4*character) data = unpack('<4f2I', file.read(6*4)) (speed, speed_focused, speed_unknown1, speed_unknown2, shots_func_offset, shots_func_offset_focused) = data sht.horizontal_vertical_speed = speed sht.horizontal_vertical_focused_speed = speed_focused sht.diagonal_speed = speed * SQ2 sht.diagonal_focused_speed = speed_focused * SQ2 # Characters might have different shot types whether they are # focused or not, but properties read earlier apply to both modes. focused_sht = copy(sht) characters.append((sht, focused_sht)) for sht, func_offset in ((sht, shots_func_offset), (focused_sht, shots_func_offset_focused)): # Search for the “push” instruction for i in range(20): # Find the “push” instruction pe_file.seek_to_va(func_offset + i) instr, offset = unpack('<BI', file.read(5)) if instr == 0x68 and 0 <= offset - data_va < data_size - 12: pe_file.seek_to_va(offset) nb_shots, power, shotsptr = unpack('<III', pe_file.file.read(12)) if (0 < nb_shots <= 1000 and 0 <= power < 1000 and 0 <= shotsptr - data_va < data_size - 36*nb_shots): break if offset not in shots_offsets: shots_offsets[offset] = [] shots_offsets[offset].append(sht) for shots_offset, shts in shots_offsets.items(): pe_file.seek_to_va(shots_offset) level_count = 9 levels = [] for i in range(level_count): shots_count, power, offset = unpack('<III', file.read(3*4)) levels.append((shots_count, power, offset)) shots = {} for shots_count, power, offset in levels: shots[power] = [] pe_file.seek_to_va(offset) for i in range(shots_count): shot = Shot() data = unpack('<HH6fHBBhh', file.read(36)) (shot.interval, shot.delay, x, y, hitbox_x, hitbox_y, shot.angle, shot.speed, shot.damage, shot.orb, shot.type, shot.sprite, shot.unknown1) = data shot.pos = (x, y) shot.hitbox = (hitbox_x, hitbox_y) shots[power].append(shot) for sht in shts: sht.shots = shots return characters