view pytouhou/utils/maths.pyx @ 791:a29122662cde

utils: Simplify translate_2d and align Mat4 to 16 bytes This lowers the amount of instructions from 61 to 32 on PowerPC with AltiVec, and from 25 to 14 on amd64 with AVX2.
author Link Mauve <linkmauve@linkmauve.fr>
date Sat, 17 Jan 2026 14:19:58 +0100
parents 7f016dfbdfb1
children
line wrap: on
line source

# -*- encoding: utf-8 -*-
##
## Copyright (C) 2013 Emmanuel Gil Peyrot <linkmauve@linkmauve.fr>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published
## by the Free Software Foundation; version 3 only.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##

from libc.math cimport tan, M_PI as pi
cimport cython

from .matrix cimport new_matrix, new_identity
from .vector cimport Vector, sub, cross, dot, normalize


cdef double radians(double degrees) nogil:
    return degrees * pi / 180


@cython.cdivision(True)
cdef Matrix *ortho_2d(float left, float right, float bottom, float top) nogil:
    mat = new_identity()
    data = <float*>mat
    data[4*0+0] = 2 / (right - left)
    data[4*1+1] = 2 / (top - bottom)
    data[4*2+2] = -1
    data[4*3+0] = -(right + left) / (right - left)
    data[4*3+1] = -(top + bottom) / (top - bottom)
    return mat


cdef Matrix *look_at(Vector eye, Vector center, Vector up):
    cdef Matrix mat

    f = normalize(sub(center, eye))
    u = normalize(up)
    s = normalize(cross(f, u))
    u = cross(s, f)

    mat = Matrix(s.x, u.x, -f.x, 0,
                 s.y, u.y, -f.y, 0,
                 s.z, u.z, -f.z, 0,
                 -dot(s, eye), -dot(u, eye), dot(f, eye), 1)

    return new_matrix(&mat)


@cython.cdivision(True)
cdef Matrix *perspective(float fovy, float aspect, float z_near, float z_far) nogil:
    top = tan(radians(fovy / 2)) * z_near
    bottom = -top
    left = -top * aspect
    right = top * aspect

    mat = new_identity()
    data = <float*>mat
    data[4*0+0] = (2 * z_near) / (right - left)
    data[4*1+1] = (2 * z_near) / (top - bottom)
    data[4*2+2] = -(z_far + z_near) / (z_far - z_near)
    data[4*2+3] = -1
    data[4*3+2] = -(2 * z_far * z_near) / (z_far - z_near)
    data[4*3+3] = 0
    return mat


cdef Matrix *setup_camera(float dx, float dy, float dz):
    # Some explanations on the magic constants:
    # 192. = 384. / 2. = width / 2.
    # 224. = 448. / 2. = height / 2.
    # 835.979370 = 224./math.tan(math.radians(15)) = (height/2.)/math.tan(math.radians(fov/2))
    # This is so that objects on the (O, x, y) plane use pixel coordinates
    return look_at(Vector(192., 224., - 835.979370 * dz),
                   Vector(192. + dx, 224. - dy, 0.), Vector(0., -1., 0.))