Mercurial > touhou
view pytouhou/utils/matrix.pyx @ 397:c5ba11ede097
Don’t duplicate values in sprite rendering data.
author | Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> |
---|---|
date | Wed, 06 Feb 2013 21:41:05 +0100 |
parents | 74471afbac37 |
children | 2428296cccab |
line wrap: on
line source
# -*- encoding: utf-8 -*- ## ## Copyright (C) 2011 Thibaut Girka <thib@sitedethib.com> ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published ## by the Free Software Foundation; version 3 only. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## from libc.math cimport sin, cos from ctypes import c_float cdef class Matrix: def __init__(Matrix self, data=None): self.data = data or [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] def __getitem__(Matrix self, key): return self.data[key] def __mul__(Matrix self, Matrix other): out = Matrix() for i in xrange(4): for j in xrange(4): out[i][j] = sum(self[i][k] * other[k][j] for k in xrange(4)) return out def get_c_data(Matrix self): data = sum(self.data, []) return (c_float * 16)(*data) cpdef flip(Matrix self): data = self.data a, b, c, d = data[0] data[0] = [-a, -b, -c, -d] cpdef scale(Matrix self, x, y, z): d1 = self.data d1[0] = [a * x for a in d1[0]] d1[1] = [a * y for a in d1[1]] d1[2] = [a * z for a in d1[2]] cpdef scale2d(Matrix self, x, y): data = self.data d1a, d1b, d1c, d1d = data[0] d2a, d2b, d2c, d2d = data[1] data[0] = [d1a * x, d1b * x, d1c * x, d1d * x] data[1] = [d2a * y, d2b * y, d2c * y, d2d * y] cpdef translate(Matrix self, x, y, z): data = self.data a, b, c = data[3][:3] a, b, c = a * x, b * y, c * z d1a, d1b, d1c, d1d = data[0] d2a, d2b, d2c, d2d = data[1] d3a, d3b, d3c, d3d = data[2] data[0] = [d1a + a, d1b + a, d1c + a, d1d + a] data[1] = [d2a + b, d2b + b, d2c + b, d2d + b] data[2] = [d3a + c, d3b + c, d3c + c, d3d + c] cpdef rotate_x(Matrix self, angle): d1 = self.data cos_a = cos(angle) sin_a = sin(angle) d1[1], d1[2] = ([cos_a * d1[1][i] - sin_a * d1[2][i] for i in range(4)], [sin_a * d1[1][i] + cos_a * d1[2][i] for i in range(4)]) cpdef rotate_y(Matrix self, angle): d1 = self.data cos_a = cos(angle) sin_a = sin(angle) d1[0], d1[2] = ([cos_a * d1[0][i] + sin_a * d1[2][i] for i in range(4)], [- sin_a * d1[0][i] + cos_a * d1[2][i] for i in range(4)]) cpdef rotate_z(Matrix self, angle): d1 = self.data cos_a = cos(angle) sin_a = sin(angle) d1[0], d1[1] = ([cos_a * d1[0][i] - sin_a * d1[1][i] for i in range(4)], [sin_a * d1[0][i] + cos_a * d1[1][i] for i in range(4)])