Mercurial > touhou
view examples/anmrenderer.rs @ 700:ccb739c5b66c
examples: factorise file reading into a buffer.
author | Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> |
---|---|
date | Fri, 23 Aug 2019 13:05:48 +0200 |
parents | 6be3320a1cb3 |
children | b6c351ca0a35 |
line wrap: on
line source
use image::GenericImageView; use luminance::blending::{Equation, Factor}; use luminance::context::GraphicsContext; use luminance::framebuffer::Framebuffer; use luminance::pipeline::BoundTexture; use luminance::pixel::{NormRGB8UI, Floating}; use luminance::render_state::RenderState; use luminance::shader::program::{Program, Uniform}; use luminance::tess::{Mode, TessBuilder}; use luminance::texture::{Dim2, Flat, Sampler, Texture, GenMipmaps}; use luminance_derive::{Semantics, Vertex, UniformInterface}; use luminance_glfw::event::{Action, Key, WindowEvent}; use luminance_glfw::surface::{GlfwSurface, Surface, WindowDim, WindowOpt}; use touhou::th06::anm0::Anm0; use touhou::th06::anm0_vm::{AnmRunner, Sprite, Vertex as FakeVertex}; use touhou::util::math::{perspective, setup_camera}; use touhou::util::prng::Prng; use std::cell::RefCell; use std::fs::File; use std::io::{BufReader, Read}; use std::rc::Rc; use std::env; use std::path::Path; const VS: &str = r#" in ivec3 in_position; in vec2 in_texcoord; in vec4 in_color; uniform mat4 mvp; out vec2 texcoord; out vec4 color; void main() { gl_Position = mvp * vec4(vec3(in_position), 1.0); texcoord = vec2(in_texcoord); // It’s already normalized from the u8 being passed. color = in_color; } "#; const FS: &str = r#" in vec2 texcoord; in vec4 color; uniform sampler2D color_map; out vec4 frag_color; void main() { frag_color = texture(color_map, texcoord) * color; } "#; #[derive(Clone, Copy, Debug, Eq, PartialEq, Semantics)] pub enum Semantics { #[sem(name = "in_position", repr = "[i16; 3]", wrapper = "VertexPosition")] Position, #[sem(name = "in_texcoord", repr = "[f32; 2]", wrapper = "VertexTexcoord")] Texcoord, #[sem(name = "in_color", repr = "[u8; 4]", wrapper = "VertexColor")] Color, } #[repr(C)] #[derive(Clone, Copy, Debug, PartialEq, Vertex)] #[vertex(sem = "Semantics")] struct Vertex { pos: VertexPosition, uv: VertexTexcoord, #[vertex(normalized = "true")] rgba: VertexColor, } #[derive(UniformInterface)] struct ShaderInterface { // the 'static lifetime acts as “anything” here color_map: Uniform<&'static BoundTexture<'static, Flat, Dim2, Floating>>, #[uniform(name = "mvp")] mvp: Uniform<[[f32; 4]; 4]>, } fn load_file_into_vec(filename: &str) -> Vec<u8> { let file = File::open(filename).unwrap(); let mut file = BufReader::new(file); let mut buf = vec![]; file.read_to_end(&mut buf).unwrap(); buf } fn main() { // Parse arguments. let args: Vec<_> = env::args().collect(); if args.len() != 4 { eprintln!("Usage: {} <ANM file> <PNG file> <script number>", args[0]); return; } let anm_filename = &args[1]; let png_filename = &args[2]; let script: u8 = args[3].parse().expect("number"); // Open the ANM file. let buf = load_file_into_vec(anm_filename); let anm0 = Anm0::from_slice(&buf).unwrap(); if !anm0.scripts.contains_key(&script) { eprintln!("This anm0 doesn’t contain a script named {}.", script); return; } // Create the sprite. let sprite = Rc::new(RefCell::new(Sprite::new())); // TODO: seed this PRNG with a valid seed. let prng = Rc::new(RefCell::new(Prng::new(0))); // Create the AnmRunner from the ANM and the sprite. let mut anm_runner = AnmRunner::new(&anm0, script, sprite.clone(), Rc::downgrade(&prng), 0); assert_eq!(std::mem::size_of::<Vertex>(), std::mem::size_of::<FakeVertex>()); let mut vertices: [Vertex; 4] = unsafe { std::mem::uninitialized() }; fill_vertices(sprite.clone(), &mut vertices); let mut surface = GlfwSurface::new(WindowDim::Windowed(384, 448), "Touhou", WindowOpt::default()).unwrap(); // Open the image atlas matching this ANM. println!("{} {}", anm0.first_name, png_filename); let tex = load_from_disk(&mut surface, Path::new(png_filename)).expect("texture loading"); // set the uniform interface to our type so that we can read textures from the shader let (program, _) = Program::<Semantics, (), ShaderInterface>::from_strings(None, VS, None, FS).expect("program creation"); let mut tess = TessBuilder::new(&mut surface) .add_vertices(vertices) .set_mode(Mode::TriangleFan) .build() .unwrap(); let mut back_buffer = Framebuffer::back_buffer(surface.size()); 'app: loop { for event in surface.poll_events() { match event { WindowEvent::Close | WindowEvent::Key(Key::Escape, _, Action::Release, _) => break 'app, WindowEvent::FramebufferSize(width, height) => { back_buffer = Framebuffer::back_buffer([width as u32, height as u32]); } _ => (), } } { let mut slice = tess .as_slice_mut() .unwrap(); anm_runner.run_frame(); fill_vertices_ptr(sprite.clone(), slice.as_mut_ptr()); } // here, we need to bind the pipeline variable; it will enable us to bind the texture to the GPU // and use it in the shader surface .pipeline_builder() .pipeline(&back_buffer, [0., 0., 0., 0.], |pipeline, shd_gate| { // bind our fancy texture to the GPU: it gives us a bound texture we can use with the shader let bound_tex = pipeline.bind_texture(&tex); shd_gate.shade(&program, |rdr_gate, iface| { // update the texture; strictly speaking, this update doesn’t do much: it just tells the GPU // to use the texture passed as argument (no allocation or copy is performed) iface.color_map.update(&bound_tex); //let mvp = ortho_2d(0., 384., 448., 0.); let proj = perspective(0.5235987755982988, 384. / 448., 101010101./2010101., 101010101./10101.); let view = setup_camera(0., 0., 1.); let mvp = view * proj; //println!("{:#?}", mvp); // TODO: check how to pass by reference. iface.mvp.update(*mvp.borrow_inner()); let render_state = RenderState::default() .set_blending((Equation::Additive, Factor::SrcAlpha, Factor::SrcAlphaComplement)); rdr_gate.render(render_state, |tess_gate| { // render the tessellation to the surface the regular way and let the vertex shader’s // magic do the rest! tess_gate.render(&mut surface, (&tess).into()); }); }); }); surface.swap_buffers(); } } fn fill_vertices_ptr(sprite: Rc<RefCell<Sprite>>, vertices: *mut Vertex) { let mut fake_vertices = unsafe { std::mem::transmute::<*mut Vertex, &mut [FakeVertex; 4]>(vertices) }; sprite.borrow().fill_vertices(&mut fake_vertices, 0., 0., 0.); } fn fill_vertices(sprite: Rc<RefCell<Sprite>>, vertices: &mut [Vertex; 4]) { let mut fake_vertices = unsafe { std::mem::transmute::<&mut [Vertex; 4], &mut [FakeVertex; 4]>(vertices) }; sprite.borrow().fill_vertices(&mut fake_vertices, 0., 0., 0.); } fn load_from_disk(surface: &mut GlfwSurface, path: &Path) -> Option<Texture<Flat, Dim2, NormRGB8UI>> { // load the texture into memory as a whole bloc (i.e. no streaming) match image::open(&path) { Ok(img) => { let (width, height) = img.dimensions(); let texels = img .pixels() .map(|(x, y, rgb)| (rgb[0], rgb[1], rgb[2])) .collect::<Vec<_>>(); // create the luminance texture; the third argument is the number of mipmaps we want (leave it // to 0 for now) and the latest is a the sampler to use when sampling the texels in the // shader (we’ll just use the default one) let tex = Texture::new(surface, [width, height], 0, &Sampler::default()).expect("luminance texture creation"); // the first argument disables mipmap generation (we don’t care so far) tex.upload(GenMipmaps::No, &texels); Some(tex) } Err(e) => { eprintln!("cannot open image {}: {}", path.display(), e); None } } }