Mercurial > touhou
view examples/stdrenderer.rs @ 700:ccb739c5b66c
examples: factorise file reading into a buffer.
author | Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> |
---|---|
date | Fri, 23 Aug 2019 13:05:48 +0200 |
parents | ef2dbd676a91 |
children | b6c351ca0a35 |
line wrap: on
line source
use image::GenericImageView; use luminance::context::GraphicsContext; use luminance::framebuffer::Framebuffer; use luminance::pipeline::BoundTexture; use luminance::pixel::{NormRGB8UI, Floating}; use luminance::render_state::RenderState; use luminance::shader::program::{Program, Uniform}; use luminance::tess::{Mode, TessBuilder, TessSliceIndex}; use luminance::texture::{Dim2, Flat, Sampler, Texture, GenMipmaps}; use luminance_derive::{Semantics, Vertex, UniformInterface}; use luminance_glfw::event::{Action, Key, WindowEvent}; use luminance_glfw::surface::{GlfwSurface, Surface, WindowDim, WindowOpt}; use touhou::th06::anm0::Anm0; use touhou::th06::anm0_vm::{AnmRunner, Sprite, Vertex as FakeVertex}; use touhou::th06::std::{Stage, Position, Box2D}; use touhou::th06::std_vm::StageRunner; use touhou::util::prng::Prng; use touhou::util::math::perspective; use std::cell::RefCell; use std::fs::File; use std::io::{BufReader, Read}; use std::rc::Rc; use std::env; use std::path::Path; const VS: &str = r#" in ivec3 in_position; in vec2 in_texcoord; in uvec4 in_color; uniform mat4 mvp; uniform vec3 instance_position; out vec2 texcoord; out vec4 color; void main() { vec3 position = vec3(in_position) + instance_position; gl_Position = mvp * vec4(position, 1.0); texcoord = vec2(in_texcoord); // Normalized from the u8 being passed. color = vec4(in_color) / 255.; } "#; const FS: &str = r#" in vec2 texcoord; in vec4 color; uniform sampler2D color_map; uniform float fog_scale; uniform float fog_end; uniform vec4 fog_color; out vec4 frag_color; void main() { vec4 temp_color = texture(color_map, texcoord) * color; float depth = gl_FragCoord.z / gl_FragCoord.w; float fog_density = clamp((fog_end - depth) * fog_scale, 0.0, 1.0); frag_color = vec4(mix(fog_color, temp_color, fog_density).rgb, temp_color.a); } "#; #[derive(Clone, Copy, Debug, Eq, PartialEq, Semantics)] pub enum Semantics { #[sem(name = "in_position", repr = "[i16; 3]", wrapper = "VertexPosition")] Position, #[sem(name = "in_texcoord", repr = "[f32; 2]", wrapper = "VertexTexcoord")] Texcoord, #[sem(name = "in_color", repr = "[u8; 4]", wrapper = "VertexColor")] Color, } #[repr(C)] #[derive(Clone, Copy, Debug, PartialEq, Vertex)] #[vertex(sem = "Semantics")] struct Vertex { pos: VertexPosition, uv: VertexTexcoord, rgba: VertexColor, } #[derive(UniformInterface)] struct ShaderInterface { // the 'static lifetime acts as “anything” here color_map: Uniform<&'static BoundTexture<'static, Flat, Dim2, Floating>>, #[uniform(name = "mvp")] mvp: Uniform<[[f32; 4]; 4]>, #[uniform(name = "instance_position")] instance_position: Uniform<[f32; 3]>, #[uniform(name = "fog_scale")] fog_scale: Uniform<f32>, #[uniform(name = "fog_end")] fog_end: Uniform<f32>, #[uniform(name = "fog_color")] fog_color: Uniform<[f32; 4]>, } fn load_file_into_vec(filename: &str) -> Vec<u8> { let file = File::open(filename).unwrap(); let mut file = BufReader::new(file); let mut buf = vec![]; file.read_to_end(&mut buf).unwrap(); buf } fn main() { // Parse arguments. let args: Vec<_> = env::args().collect(); if args.len() != 4 { eprintln!("Usage: {} <STD file> <ANM file> <PNG file>", args[0]); return; } let std_filename = &args[1]; let anm_filename = &args[2]; let png_filename = &args[3]; // Open the STD file. let buf = load_file_into_vec(std_filename); let (_, stage) = Stage::from_slice(&buf).unwrap(); // Open the ANM file. let buf = load_file_into_vec(anm_filename); let anm0 = Anm0::from_slice(&buf).unwrap(); // TODO: seed this PRNG with a valid seed. let prng = Rc::new(RefCell::new(Prng::new(0))); assert_eq!(std::mem::size_of::<Vertex>(), std::mem::size_of::<FakeVertex>()); let mut vertices: Vec<Vertex> = vec![]; let mut indices = vec![]; { for model in stage.models.iter() { let begin = vertices.len(); for quad in model.quads.iter() { let Position { x, y, z } = quad.pos; let Box2D { width, height } = quad.size_override; // Create the AnmRunner from the ANM and the sprite. let sprite = Rc::new(RefCell::new(Sprite::with_size(width, height))); let _anm_runner = AnmRunner::new(&anm0, quad.anm_script as u8, sprite.clone(), Rc::downgrade(&prng), 0); let mut new_vertices: [Vertex; 6] = unsafe { std::mem::uninitialized() }; fill_vertices(sprite.clone(), &mut new_vertices, x, y, z); new_vertices[4] = new_vertices[0]; new_vertices[5] = new_vertices[2]; vertices.extend(&new_vertices); } let end = vertices.len(); indices.push((begin, end)); } } let mut stage_runner = StageRunner::new(Rc::new(RefCell::new(stage))); let mut surface = GlfwSurface::new(WindowDim::Windowed(384, 448), "Touhou", WindowOpt::default()).unwrap(); // Open the image atlas matching this ANM. let tex = load_from_disk(&mut surface, Path::new(png_filename)).expect("texture loading"); // set the uniform interface to our type so that we can read textures from the shader let (program, _) = Program::<Semantics, (), ShaderInterface>::from_strings(None, VS, None, FS).expect("program creation"); let tess = TessBuilder::new(&mut surface) .add_vertices(vertices) .set_mode(Mode::Triangle) .build() .unwrap(); let mut back_buffer = Framebuffer::back_buffer(surface.size()); 'app: loop { for event in surface.poll_events() { match event { WindowEvent::Close | WindowEvent::Key(Key::Escape, _, Action::Release, _) => break 'app, WindowEvent::FramebufferSize(width, height) => { back_buffer = Framebuffer::back_buffer([width as u32, height as u32]); } _ => (), } } { stage_runner.run_frame(); //let sprites = stage.get_sprites(); //fill_vertices_ptr(sprites, slice.as_mut_ptr()); } // here, we need to bind the pipeline variable; it will enable us to bind the texture to the GPU // and use it in the shader surface .pipeline_builder() .pipeline(&back_buffer, [0., 0., 0., 0.], |pipeline, shd_gate| { // bind our fancy texture to the GPU: it gives us a bound texture we can use with the shader let bound_tex = pipeline.bind_texture(&tex); shd_gate.shade(&program, |rdr_gate, iface| { // update the texture; strictly speaking, this update doesn’t do much: it just tells the GPU // to use the texture passed as argument (no allocation or copy is performed) iface.color_map.update(&bound_tex); let proj = perspective(0.5235987755982988, 384. / 448., 101010101./2010101., 101010101./10101.); let model_view = stage_runner.get_model_view(); let mvp = model_view * proj; // TODO: check how to pass by reference. iface.mvp.update(*mvp.borrow_inner()); let near = stage_runner.fog_near - 101010101. / 2010101.; let far = stage_runner.fog_far - 101010101. / 2010101.; iface.fog_color.update(stage_runner.fog_color); iface.fog_scale.update(1. / (far - near)); iface.fog_end.update(far); let stage = stage_runner.stage.borrow(); for instance in stage.instances.iter() { iface.instance_position.update([instance.pos.x, instance.pos.y, instance.pos.z]); rdr_gate.render(RenderState::default(), |tess_gate| { let (begin, end) = indices[instance.id as usize]; tess_gate.render(&mut surface, tess.slice(begin..end)); }); } }); }); surface.swap_buffers(); } } fn fill_vertices(sprite: Rc<RefCell<Sprite>>, vertices: &mut [Vertex; 6], x: f32, y: f32, z: f32) { let mut fake_vertices = unsafe { std::mem::transmute::<&mut [Vertex; 6], &mut [FakeVertex; 4]>(vertices) }; let sprite = sprite.borrow(); sprite.fill_vertices(&mut fake_vertices, x, y, z); } fn load_from_disk(surface: &mut GlfwSurface, path: &Path) -> Option<Texture<Flat, Dim2, NormRGB8UI>> { // load the texture into memory as a whole bloc (i.e. no streaming) match image::open(&path) { Ok(img) => { let (width, height) = img.dimensions(); let texels = img .pixels() .map(|(_x, _y, rgb)| (rgb[0], rgb[1], rgb[2])) .collect::<Vec<_>>(); // create the luminance texture; the third argument is the number of mipmaps we want (leave it // to 0 for now) and the latest is a the sampler to use when sampling the texels in the // shader (we’ll just use the default one) let tex = Texture::new(surface, [width, height], 0, &Sampler::default()).expect("luminance texture creation"); // the first argument disables mipmap generation (we don’t care so far) tex.upload(GenMipmaps::No, &texels); Some(tex) } Err(e) => { eprintln!("cannot open image {}: {}", path.display(), e); None } } }