Mercurial > touhou
view pytouhou/ui/renderer.pyx @ 389:eef492100f4c
Add "explosion", instruction 118.
author | Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> |
---|---|
date | Sun, 21 Oct 2012 23:02:41 +0200 |
parents | 690b5faaa0e6 |
children | 9e2cbb2c2c64 |
line wrap: on
line source
# -*- encoding: utf-8 -*- ## ## Copyright (C) 2011 Thibaut Girka <thib@sitedethib.com> ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published ## by the Free Software Foundation; version 3 only. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## from libc.stdlib cimport malloc, free from libc.math cimport tan from math import radians from itertools import chain import ctypes from struct import pack from pyglet.gl import (glVertexPointer, glTexCoordPointer, glColorPointer, glBlendFunc, glBindTexture, glDrawElements, GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_INT, GL_FLOAT, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_TEXTURE_2D, GL_TRIANGLES) from .sprite cimport get_sprite_rendering_data from .texture cimport TextureManager from pytouhou.utils.matrix cimport Matrix from pytouhou.utils.vector import Vector, normalize, cross, dot MAX_ELEMENTS = 640*4*3 cdef class Renderer: def __cinit__(self): # Allocate buffers self.vertex_buffer = <Vertex*> malloc(MAX_ELEMENTS * sizeof(Vertex)) def __dealloc__(self): free(self.vertex_buffer) def __init__(self, resource_loader): self.texture_manager = TextureManager(resource_loader) cpdef render_elements(self, elements): cdef unsigned short nb_vertices = 0 indices_by_texture = {} objects = chain(*[element.objects for element in elements]) for element in objects: if nb_vertices >= MAX_ELEMENTS - 4: break sprite = element.sprite if sprite and sprite.visible: ox, oy = element.x, element.y key, (vertices, uvs, colors) = get_sprite_rendering_data(sprite) rec = indices_by_texture.setdefault(key, []) # Pack data in buffer (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4) = vertices r1, g1, b1, a1, r2, g2, b2, a2, r3, g3, b3, a3, r4, g4, b4, a4 = colors u1, v1, u2, v2, u3, v3, u4, v4 = uvs self.vertex_buffer[nb_vertices] = Vertex(x1 + ox, y1 + oy, z1, u1, v1, r1, g1, b1, a1) self.vertex_buffer[nb_vertices+1] = Vertex(x2 + ox, y2 + oy, z2, u2, v2, r2, g2, b2, a2) self.vertex_buffer[nb_vertices+2] = Vertex(x3 + ox, y3 + oy, z3, u3, v3, r3, g3, b3, a3) self.vertex_buffer[nb_vertices+3] = Vertex(x4 + ox, y4 + oy, z4, u4, v4, r4, g4, b4, a4) # Add indices index = nb_vertices rec.extend((index, index + 1, index + 2, index + 2, index + 3, index)) nb_vertices += 4 for (texture_key, blendfunc), indices in indices_by_texture.items(): glVertexPointer(3, GL_INT, 24, <long> &self.vertex_buffer[0].x) glTexCoordPointer(2, GL_FLOAT, 24, <long> &self.vertex_buffer[0].u) glColorPointer(4, GL_UNSIGNED_BYTE, 24, <long> &self.vertex_buffer[0].r) nb_indices = len(indices) indices = pack(str(nb_indices) + 'H', *indices) glBlendFunc(GL_SRC_ALPHA, (GL_ONE_MINUS_SRC_ALPHA, GL_ONE)[blendfunc]) glBindTexture(GL_TEXTURE_2D, self.texture_manager[texture_key].id) glDrawElements(GL_TRIANGLES, nb_indices, GL_UNSIGNED_SHORT, indices) cpdef ortho_2d(self, left, right, bottom, top): mat = Matrix() mat[0][0] = 2 / (right - left) mat[1][1] = 2 / (top - bottom) mat[2][2] = -1 mat[3][0] = -(right + left) / (right - left) mat[3][1] = -(top + bottom) / (top - bottom) return mat cpdef look_at(self, eye, center, up): eye = Vector(eye) center = Vector(center) up = Vector(up) f = normalize(center - eye) u = normalize(up) s = normalize(cross(f, u)) u = cross(s, f) return Matrix([[s[0], u[0], -f[0], 0], [s[1], u[1], -f[1], 0], [s[2], u[2], -f[2], 0], [-dot(s, eye), -dot(u, eye), dot(f, eye), 1]]) cpdef perspective(self, fovy, aspect, z_near, z_far): top = tan(radians(fovy / 2)) * z_near bottom = -top left = -top * aspect right = top * aspect mat = Matrix() mat[0][0] = (2 * z_near) / (right - left) mat[1][1] = (2 * z_near) / (top - bottom) mat[2][2] = -(z_far + z_near) / (z_far - z_near) mat[2][3] = -1 mat[3][2] = -(2 * z_far * z_near) / (z_far - z_near) mat[3][3] = 0 return mat cpdef setup_camera(self, dx, dy, dz): # Some explanations on the magic constants: # 192. = 384. / 2. = width / 2. # 224. = 448. / 2. = height / 2. # 835.979370 = 224./math.tan(math.radians(15)) = (height/2.)/math.tan(math.radians(fov/2)) # This is so that objects on the (O, x, y) plane use pixel coordinates return self.look_at((192., 224., - 835.979370 * dz), (192. + dx, 224. - dy, 0.), (0., -1., 0.))