Mercurial > touhou
view runners/src/bin/stagerunner.rs @ 770:f6c287745a67
Rust: Add a libtouhou Python wrapper using pyo3
author | Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> |
---|---|
date | Tue, 30 Aug 2022 18:23:55 +0200 |
parents | 21b186be2590 |
children |
line wrap: on
line source
use luminance::blending::{Equation, Factor}; use luminance::context::GraphicsContext; use luminance::pipeline::{BoundTexture, PipelineState}; use luminance::pixel::NormUnsigned; use luminance::render_state::RenderState; use luminance::shader::program::{Program, Uniform}; use luminance::tess::{Mode, TessBuilder}; use luminance::texture::Dim2Array; use luminance_derive::{Semantics, Vertex, UniformInterface}; use luminance_glfw::{Action, Key, WindowEvent, GlfwSurface, Surface, WindowDim, WindowOpt}; use touhou_formats::th06::anm0::Anm0; use touhou_formats::th06::ecl::{Ecl, Rank, MainInstruction}; use touhou_interpreters::th06::anm0::Vertex as FakeVertex; use touhou_interpreters::th06::ecl::EclRunner; use touhou_interpreters::th06::enemy::{Enemy, Game, Position}; use touhou_utils::math::{perspective, setup_camera}; use touhou_utils::prng::Prng; use std::cell::RefCell; use std::rc::Rc; use std::env; use std::path::Path; use touhou_runners::common::{load_file_into_vec, load_multiple_anm_images, LoadedTexture}; const VS: &str = r#" in ivec3 in_position; in uint in_layer; in vec2 in_texcoord; in uvec4 in_color; uniform mat4 mvp; flat out uint layer; out vec2 texcoord; out vec4 color; void main() { gl_Position = mvp * vec4(vec3(in_position), 1.0); texcoord = vec2(in_texcoord); // Normalized from the u8 being passed. color = vec4(in_color) / 255.; layer = in_layer; } "#; const FS: &str = r#" flat in uint layer; in vec2 texcoord; in vec4 color; uniform sampler2DArray color_map; out vec4 frag_color; void main() { frag_color = texture(color_map, vec3(texcoord, layer)) * color; } "#; #[derive(Clone, Copy, Debug, Eq, PartialEq, Semantics)] pub enum Semantics { #[sem(name = "in_position", repr = "[i16; 3]", wrapper = "VertexPosition")] Position, #[sem(name = "in_layer", repr = "u16", wrapper = "VertexLayer")] Layer, #[sem(name = "in_texcoord", repr = "[f32; 2]", wrapper = "VertexTexcoord")] Texcoord, #[sem(name = "in_color", repr = "[u8; 4]", wrapper = "VertexColor")] Color, } #[repr(C)] #[derive(Clone, Copy, Debug, PartialEq, Vertex)] #[vertex(sem = "Semantics")] struct Vertex { pos: VertexPosition, layer: VertexLayer, uv: VertexTexcoord, rgba: VertexColor, } #[derive(UniformInterface)] struct ShaderInterface { // the 'static lifetime acts as “anything” here color_map: Uniform<&'static BoundTexture<'static, Dim2Array, NormUnsigned>>, #[uniform(name = "mvp")] mvp: Uniform<[[f32; 4]; 4]>, } fn main() { // Parse arguments. let args: Vec<_> = env::args().collect(); if args.len() != 4 { eprintln!("Usage: {} <unarchived ST.DAT directory> <stage number> <easy|normal|hard|lunatic>", args[0]); return; } let directory = Path::new(&args[1]); let stage_number: u8 = args[2].parse().expect("stage"); let rank: Rank = args[3].parse().expect("rank"); // Open the ECL file. let buf = load_file_into_vec(directory.join(format!("ecldata{}.ecl", stage_number))).unwrap(); let (_, ecl) = Ecl::from_slice(&buf).unwrap(); assert_eq!(ecl.mains.len(), 1); let main = ecl.mains[0].clone(); // Open the ANM file. let anm_filename = directory.join(format!("stg{}enm.anm", stage_number)); let buf = load_file_into_vec(&anm_filename).unwrap(); let (_, mut anms) = Anm0::from_slice(&buf).unwrap(); let anm0 = anms.pop().unwrap(); // Open the second ANM file. let anm2_filename = directory.join(format!("stg{}enm2.anm", stage_number)); let buf = load_file_into_vec(&anm2_filename).unwrap(); let (_, mut anms) = Anm0::from_slice(&buf).unwrap(); let anm0_bis = anms.pop().unwrap(); let anms = [anm0, anm0_bis]; // Get the time since January 1970 as a seed for the PRNG. let time = std::time::SystemTime::now().duration_since(std::time::UNIX_EPOCH).unwrap(); let prng = Rc::new(RefCell::new(Prng::new(time.subsec_micros() as u16))); // Create the Game god object. let game = Game::new(prng, rank); let game = Rc::new(RefCell::new(game)); assert_eq!(std::mem::size_of::<Vertex>(), std::mem::size_of::<FakeVertex>()); let vertices: [Vertex; 4] = { let data = std::mem::MaybeUninit::uninit(); unsafe { data.assume_init() } }; let mut surface = GlfwSurface::new(WindowDim::Windowed(384, 448), "Touhou", WindowOpt::default()).unwrap(); // Open the image atlas matching this ANM. let tex = load_multiple_anm_images(&mut surface, &anms, &anm_filename).expect("image loading"); let anms = Rc::new(RefCell::new(anms)); // set the uniform interface to our type so that we can read textures from the shader let program = Program::<Semantics, (), ShaderInterface>::from_strings(None, VS, None, FS).expect("program creation").ignore_warnings(); let mut tess = TessBuilder::new(&mut surface) .add_vertices(vertices) .set_mode(Mode::TriangleFan) .build() .unwrap(); let mut back_buffer = surface.back_buffer().unwrap(); let mut resize = false; let mut frame = 0; let mut ecl_runners = vec![]; 'app: loop { for event in surface.poll_events() { match event { WindowEvent::Close | WindowEvent::Key(Key::Escape, _, Action::Release, _) => break 'app, WindowEvent::FramebufferSize(..) => { resize = true; } _ => (), } } if resize { back_buffer = surface.back_buffer().unwrap(); resize = false; } for call in main.instructions.iter() { if call.time == frame { let sub = call.sub; let instr = call.instr; let (x, y, _z, life, bonus, score, mirror) = match instr { MainInstruction::SpawnEnemy(x, y, z, life, bonus, score) => (x, y, z, life, bonus, score, false), MainInstruction::SpawnEnemyMirrored(x, y, z, life, bonus, score) => (x, y, z, life, bonus, score, true), MainInstruction::SpawnEnemyRandom(x, y, z, life, bonus, score) => (x, y, z, life, bonus, score, false), MainInstruction::SpawnEnemyMirroredRandom(x, y, z, life, bonus, score) => (x, y, z, life, bonus, score, true), _ => continue, }; let enemy = Enemy::new(Position::new(x, y), life, bonus, score, mirror, Rc::downgrade(&anms), Rc::downgrade(&game)); let runner = EclRunner::new(&ecl, enemy, sub); ecl_runners.push(runner); } } for runner in ecl_runners.iter_mut() { runner.run_frame(); let mut enemy = runner.enemy.borrow_mut(); enemy.update(); } // here, we need to bind the pipeline variable; it will enable us to bind the texture to the GPU // and use it in the shader surface .pipeline_builder() .pipeline(&back_buffer, &PipelineState::default(), |pipeline, mut shd_gate| { // bind our fancy texture to the GPU: it gives us a bound texture we can use with the shader let bound_tex = match &tex { LoadedTexture::Rgb(tex) => unreachable!(), LoadedTexture::Rgba(tex) => unreachable!(), LoadedTexture::RgbaArray(tex) => pipeline.bind_texture(tex), }; shd_gate.shade(&program, |iface, mut rdr_gate| { // update the texture; strictly speaking, this update doesn’t do much: it just tells the GPU // to use the texture passed as argument (no allocation or copy is performed) iface.color_map.update(&bound_tex); //let mvp = ortho_2d(0., 384., 448., 0.); let proj = perspective(0.5235987755982988, 384. / 448., 101010101./2010101., 101010101./10101.); let view = setup_camera(0., 0., 1.); let mvp = view * proj; //println!("{:#?}", mvp); // TODO: check how to pass by reference. iface.mvp.update(*mvp.borrow_inner()); let render_state = RenderState::default() .set_depth_test(None) .set_blending((Equation::Additive, Factor::SrcAlpha, Factor::SrcAlphaComplement)); rdr_gate.render(&render_state, |mut tess_gate| { let mut game = game.borrow_mut(); game.run_frame(); for (x, y, z, sprite) in game.get_sprites() { { let mut slice = tess .as_slice_mut() .unwrap(); let sprite = sprite.borrow(); let fake_vertices = unsafe { std::mem::transmute::<*mut Vertex, &mut [FakeVertex; 4]>(slice.as_mut_ptr()) }; sprite.fill_vertices(fake_vertices, x, y, z); } // render the tessellation to the surface the regular way and let the vertex shader’s // magic do the rest! tess_gate.render(&tess); } }); }); }); surface.swap_buffers(); frame += 1; } }