Mercurial > touhou
view src/util/math.rs @ 725:fbf89cba04e2
ecl_vm: some work on spellcard 11
author | Gauvain "GovanifY" Roussel-Tarbouriech <gauvain@govanify.com> |
---|---|
date | Tue, 29 Oct 2019 15:41:23 +0100 |
parents | 01849ffd0180 |
children |
line wrap: on
line source
//! Various helpers to deal with vectors and matrices. /// A 4×4 f32 matrix type. pub struct Mat4 { inner: [[f32; 4]; 4] } impl Mat4 { /// Create a new matrix from a set of 16 f32. pub fn new(inner: [[f32; 4]; 4]) -> Mat4 { Mat4 { inner } } fn zero() -> Mat4 { Mat4 { inner: [[0.; 4]; 4] } } fn identity() -> Mat4 { Mat4 { inner: [[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]] } } /// Immutably borrow the array of f32 inside this matrix. pub fn borrow_inner(&self) -> &[[f32; 4]; 4] { &self.inner } /// Scale the matrix in 2D. pub fn scale2d(&mut self, x: f32, y: f32) { for i in 0..4 { self.inner[0][i] *= x; self.inner[1][i] *= y; } } /// Flip the matrix. pub fn flip(&mut self) { for i in 0..4 { self.inner[0][i] = -self.inner[0][i]; } } /// Rotate the matrix around its x angle (in radians). pub fn rotate_x(&mut self, angle: f32) { let mut lines: [f32; 8] = [0.; 8]; let cos_a = angle.cos(); let sin_a = angle.sin(); for i in 0..4 { lines[ i] = self.inner[0][i]; lines[4 + i] = self.inner[1][i]; } for i in 0..4 { self.inner[1][i] = cos_a * lines[i] - sin_a * lines[4+i]; self.inner[2][i] = sin_a * lines[i] + cos_a * lines[4+i]; } } /// Rotate the matrix around its y angle (in radians). pub fn rotate_y(&mut self, angle: f32) { let mut lines: [f32; 8] = [0.; 8]; let cos_a = angle.cos(); let sin_a = angle.sin(); for i in 0..4 { lines[ i] = self.inner[0][i]; lines[4 + i] = self.inner[2][i]; } for i in 0..4 { self.inner[0][i] = cos_a * lines[i] + sin_a * lines[4+i]; self.inner[2][i] = -sin_a * lines[i] + cos_a * lines[4+i]; } } /// Rotate the matrix around its z angle (in radians). pub fn rotate_z(&mut self, angle: f32) { let mut lines: [f32; 8] = [0.; 8]; let cos_a = angle.cos(); let sin_a = angle.sin(); for i in 0..4 { lines[ i] = self.inner[0][i]; lines[4 + i] = self.inner[1][i]; } for i in 0..4 { self.inner[0][i] = cos_a * lines[i] - sin_a * lines[4+i]; self.inner[1][i] = sin_a * lines[i] + cos_a * lines[4+i]; } } /// Translate the matrix by a 3D offset. pub fn translate(&mut self, offset: [f32; 3]) { let mut item: [f32; 3] = [0.; 3]; for i in 0..3 { item[i] = self.inner[3][i] * offset[i]; } for i in 0..3 { for j in 0..4 { self.inner[i][j] += item[i]; } } } /// Translate the matrix by a 2D offset. pub fn translate_2d(&mut self, x: f32, y: f32) { let offset = [x, y, 0.]; self.translate(offset); } } impl std::ops::Mul<Mat4> for Mat4 { type Output = Mat4; fn mul(self, rhs: Mat4) -> Mat4 { let mut tmp = Mat4::zero(); for i in 0..4 { for j in 0..4 { for k in 0..4 { tmp.inner[i][j] += self.inner[i][k] * rhs.inner[k][j]; } } } tmp } } /// Create an orthographic projection matrix. pub fn ortho_2d(left: f32, right: f32, bottom: f32, top: f32) -> Mat4 { let mut mat = Mat4::identity(); mat.inner[0][0] = 2. / (right - left); mat.inner[1][1] = 2. / (top - bottom); mat.inner[2][2] = -1.; mat.inner[3][0] = -(right + left) / (right - left); mat.inner[3][1] = -(top + bottom) / (top - bottom); mat } /// Setup a camera view matrix. pub fn setup_camera(dx: f32, dy: f32, dz: f32) -> Mat4 { // Some explanations on the magic constants: // 192. = 384. / 2. = width / 2. // 224. = 448. / 2. = height / 2. // 835.979370 = 224./math.tan(math.radians(15)) = (height/2.)/math.tan(math.radians(fov/2)) // This is so that objects on the (O, x, y) plane use pixel coordinates look_at([192., 224., -835.979370 * dz], [192. + dx, 224. - dy, 0.], [0., -1., 0.]) } /// Creates a perspective projection matrix. pub fn perspective(fov_y: f32, aspect: f32, z_near: f32, z_far: f32) -> Mat4 { let top = (fov_y / 2.).tan() * z_near; let bottom = -top; let left = -top * aspect; let right = top * aspect; let mut mat = Mat4::identity(); mat.inner[0][0] = (2. * z_near) / (right - left); mat.inner[1][1] = (2. * z_near) / (top - bottom); mat.inner[2][2] = -(z_far + z_near) / (z_far - z_near); mat.inner[2][3] = -1.; mat.inner[3][2] = -(2. * z_far * z_near) / (z_far - z_near); mat.inner[3][3] = 0.; mat } type Vec3 = [f32; 3]; fn look_at(eye: Vec3, center: Vec3, up: Vec3) -> Mat4 { let f = normalize(sub(center, eye)); let u = normalize(up); let s = normalize(cross(f, u)); let u = cross(s, f); Mat4::new([[s[0], u[0], -f[0], 0.], [s[1], u[1], -f[1], 0.], [s[2], u[2], -f[2], 0.], [-dot(s, eye), -dot(u, eye), dot(f, eye), 1.]]) } fn sub(a: Vec3, b: Vec3) -> Vec3 { [a[0] - b[0], a[1] - b[1], a[2] - b[2]] } fn normalize(vec: Vec3) -> Vec3 { let normal = 1. / (vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]).sqrt(); [vec[0] * normal, vec[1] * normal, vec[2] * normal] } fn cross(a: Vec3, b: Vec3) -> Vec3 { [a[1] * b[2] - b[1] * a[2], a[2] * b[0] - b[2] * a[0], a[0] * b[1] - b[0] * a[1]] } fn dot(a: Vec3, b: Vec3) -> f32 { a[0] * b[0] + a[1] * b[1] + a[2] * b[2] }