Mercurial > touhou
comparison pytouhou/utils/maths.pyx @ 523:6e3b3d5d4691
Make matrix a struct.
author | Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> |
---|---|
date | Wed, 18 Dec 2013 17:53:29 +0100 |
parents | cb5c68598ab0 |
children | 7f016dfbdfb1 |
comparison
equal
deleted
inserted
replaced
522:e8496e5ba056 | 523:6e3b3d5d4691 |
---|---|
12 ## GNU General Public License for more details. | 12 ## GNU General Public License for more details. |
13 ## | 13 ## |
14 | 14 |
15 from libc.math cimport tan, M_PI as pi | 15 from libc.math cimport tan, M_PI as pi |
16 | 16 |
17 from .matrix cimport new_matrix, new_identity | |
17 from .vector cimport Vector, normalize, cross, dot | 18 from .vector cimport Vector, normalize, cross, dot |
18 | 19 |
19 | 20 |
20 cdef double radians(double degrees) nogil: | 21 cdef double radians(double degrees) nogil: |
21 return degrees * pi / 180 | 22 return degrees * pi / 180 |
22 | 23 |
23 | 24 |
24 cdef Matrix ortho_2d(float left, float right, float bottom, float top): | 25 cdef Matrix *ortho_2d(float left, float right, float bottom, float top): |
25 cdef float *data | 26 mat = new_identity() |
26 | 27 data = <float*>mat |
27 mat = Matrix() | |
28 data = mat.data | |
29 data[4*0+0] = 2 / (right - left) | 28 data[4*0+0] = 2 / (right - left) |
30 data[4*1+1] = 2 / (top - bottom) | 29 data[4*1+1] = 2 / (top - bottom) |
31 data[4*2+2] = -1 | 30 data[4*2+2] = -1 |
32 data[4*3+0] = -(right + left) / (right - left) | 31 data[4*3+0] = -(right + left) / (right - left) |
33 data[4*3+1] = -(top + bottom) / (top - bottom) | 32 data[4*3+1] = -(top + bottom) / (top - bottom) |
34 return mat | 33 return mat |
35 | 34 |
36 | 35 |
37 cdef Matrix look_at(Vector eye, Vector center, Vector up): | 36 cdef Matrix *look_at(Vector eye, Vector center, Vector up): |
37 cdef Matrix mat | |
38 | |
38 f = normalize(center.sub(eye)) | 39 f = normalize(center.sub(eye)) |
39 u = normalize(up) | 40 u = normalize(up) |
40 s = normalize(cross(f, u)) | 41 s = normalize(cross(f, u)) |
41 u = cross(s, f) | 42 u = cross(s, f) |
42 | 43 |
43 return Matrix([s.x, u.x, -f.x, 0, | 44 mat = Matrix(s.x, u.x, -f.x, 0, |
44 s.y, u.y, -f.y, 0, | 45 s.y, u.y, -f.y, 0, |
45 s.z, u.z, -f.z, 0, | 46 s.z, u.z, -f.z, 0, |
46 -dot(s, eye), -dot(u, eye), dot(f, eye), 1]) | 47 -dot(s, eye), -dot(u, eye), dot(f, eye), 1) |
48 | |
49 return new_matrix(&mat) | |
47 | 50 |
48 | 51 |
49 cdef Matrix perspective(float fovy, float aspect, float z_near, float z_far): | 52 cdef Matrix *perspective(float fovy, float aspect, float z_near, float z_far): |
50 cdef float *data | |
51 | |
52 top = tan(radians(fovy / 2)) * z_near | 53 top = tan(radians(fovy / 2)) * z_near |
53 bottom = -top | 54 bottom = -top |
54 left = -top * aspect | 55 left = -top * aspect |
55 right = top * aspect | 56 right = top * aspect |
56 | 57 |
57 mat = Matrix() | 58 mat = new_identity() |
58 data = mat.data | 59 data = <float*>mat |
59 data[4*0+0] = (2 * z_near) / (right - left) | 60 data[4*0+0] = (2 * z_near) / (right - left) |
60 data[4*1+1] = (2 * z_near) / (top - bottom) | 61 data[4*1+1] = (2 * z_near) / (top - bottom) |
61 data[4*2+2] = -(z_far + z_near) / (z_far - z_near) | 62 data[4*2+2] = -(z_far + z_near) / (z_far - z_near) |
62 data[4*2+3] = -1 | 63 data[4*2+3] = -1 |
63 data[4*3+2] = -(2 * z_far * z_near) / (z_far - z_near) | 64 data[4*3+2] = -(2 * z_far * z_near) / (z_far - z_near) |
64 data[4*3+3] = 0 | 65 data[4*3+3] = 0 |
65 return mat | 66 return mat |
66 | 67 |
67 | 68 |
68 cdef Matrix setup_camera(float dx, float dy, float dz): | 69 cdef Matrix *setup_camera(float dx, float dy, float dz): |
69 # Some explanations on the magic constants: | 70 # Some explanations on the magic constants: |
70 # 192. = 384. / 2. = width / 2. | 71 # 192. = 384. / 2. = width / 2. |
71 # 224. = 448. / 2. = height / 2. | 72 # 224. = 448. / 2. = height / 2. |
72 # 835.979370 = 224./math.tan(math.radians(15)) = (height/2.)/math.tan(math.radians(fov/2)) | 73 # 835.979370 = 224./math.tan(math.radians(15)) = (height/2.)/math.tan(math.radians(fov/2)) |
73 # This is so that objects on the (O, x, y) plane use pixel coordinates | 74 # This is so that objects on the (O, x, y) plane use pixel coordinates |