changeset 643:01849ffd0180

Add an anmrenderer binary.
author Emmanuel Gil Peyrot <linkmauve@linkmauve.fr>
date Fri, 02 Aug 2019 20:24:45 +0200
parents 9e40bd5cc26d
children f983a4c98410
files Cargo.toml examples/anmrenderer.rs src/th06/anm0.rs src/th06/anm0_vm.rs src/util/math.rs src/util/mod.rs
diffstat 6 files changed, 539 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- a/Cargo.toml
+++ b/Cargo.toml
@@ -11,3 +11,10 @@ license = "GPL-3.0-or-later"
 
 [dependencies]
 nom = "5"
+image = { version = "0.22", default-features = false, features = ["png_codec"] }
+luminance = { version = "*", path = "../luminance/luminance" }
+luminance-glfw = { version = "*", path = "../luminance/luminance-glfw", default-features = false }
+luminance-derive = { version = "*", path = "../luminance/luminance-derive" }
+
+[profile.dev]
+panic = "abort"
new file mode 100644
--- /dev/null
+++ b/examples/anmrenderer.rs
@@ -0,0 +1,231 @@
+use image::GenericImageView;
+use luminance::context::GraphicsContext;
+use luminance::framebuffer::Framebuffer;
+use luminance::pipeline::BoundTexture;
+use luminance::pixel::{RGB, Floating};
+use luminance::render_state::RenderState;
+use luminance::shader::program::{Program, Uniform};
+use luminance::tess::{Mode, TessBuilder};
+use luminance::texture::{Dim2, Flat, Sampler, Texture, GenMipmaps};
+use luminance_derive::{Semantics, Vertex, UniformInterface};
+use luminance_glfw::event::{Action, Key, WindowEvent};
+use luminance_glfw::surface::{GlfwSurface, Surface, WindowDim, WindowOpt};
+use touhou::th06::anm0::Anm0;
+use touhou::th06::anm0_vm::{AnmRunner, Sprite, Vertex as FakeVertex};
+use touhou::util::math::{perspective, setup_camera};
+use std::cell::RefCell;
+use std::fs::File;
+use std::io::{BufReader, Read};
+use std::rc::Rc;
+use std::env;
+use std::path::Path;
+
+const VS: &str = r#"
+in ivec3 in_position;
+in vec2 in_texcoord;
+in uvec4 in_color;
+
+uniform mat4 mvp;
+
+out vec2 texcoord;
+out vec4 color;
+
+void main()
+{
+    gl_Position = mvp * vec4(vec3(in_position), 1.0);
+    texcoord = vec2(in_texcoord);
+
+    // Normalized from the u8 being passed.
+    color = vec4(in_color) / 255.;
+}
+"#;
+
+const FS: &str = r#"
+in vec2 texcoord;
+in vec4 color;
+
+uniform sampler2D color_map;
+
+out vec4 frag_color;
+
+void main()
+{
+    frag_color = texture(color_map, texcoord) * color;
+}
+"#;
+
+#[derive(Clone, Copy, Debug, Eq, PartialEq, Semantics)]
+pub enum Semantics {
+    #[sem(name = "in_position", repr = "[i16; 3]", wrapper = "VertexPosition")]
+    Position,
+
+    #[sem(name = "in_texcoord", repr = "[f32; 2]", wrapper = "VertexTexcoord")]
+    Texcoord,
+
+    #[sem(name = "in_color", repr = "[u8; 4]", wrapper = "VertexColor")]
+    Color,
+}
+
+#[repr(C)]
+#[derive(Clone, Copy, Debug, PartialEq, Vertex)]
+#[vertex(sem = "Semantics")]
+struct Vertex {
+    pos: VertexPosition,
+    uv: VertexTexcoord,
+    rgba: VertexColor,
+}
+
+#[derive(UniformInterface)]
+struct ShaderInterface {
+    // the 'static lifetime acts as “anything” here
+    color_map: Uniform<&'static BoundTexture<'static, Flat, Dim2, Floating>>,
+
+    #[uniform(name = "mvp")]
+    mvp: Uniform<[[f32; 4]; 4]>,
+}
+
+fn main() {
+    // Parse arguments.
+    let args: Vec<_> = env::args().collect();
+    if args.len() != 4 {
+        eprintln!("Usage: {} <ANM file> <PNG file> <script number>", args[0]);
+        return;
+    }
+    let anm_filename = &args[1];
+    let png_filename = &args[2];
+    let script: u8 = args[3].parse().expect("number");
+
+    // Open the ANM file.
+    let file = File::open(anm_filename).unwrap();
+    let mut file = BufReader::new(file);
+    let mut buf = vec![];
+    file.read_to_end(&mut buf).unwrap();
+    let anm0 = Anm0::from_slice(&buf).unwrap();
+
+    if !anm0.scripts.contains_key(&script) {
+        eprintln!("This anm0 doesn’t contain a script named {}.", script);
+        return;
+    }
+
+    // Create the sprite.
+    let sprite = Rc::new(RefCell::new(Sprite::new(0., 0.)));
+
+    // Create the AnmRunner from the ANM and the sprite.
+    let mut anm_runner = AnmRunner::new(&anm0, script, sprite.clone(), 0);
+
+    assert_eq!(std::mem::size_of::<Vertex>(), std::mem::size_of::<FakeVertex>());
+    let mut vertices: [Vertex; 4] = unsafe { std::mem::uninitialized() };
+    fill_vertices(sprite.clone(), &mut vertices);
+
+    let mut surface = GlfwSurface::new(WindowDim::Windowed(384, 448), "Touhou", WindowOpt::default()).unwrap();
+
+    // Open the image atlas matching this ANM.
+    println!("{} {}", anm0.first_name, png_filename);
+    let tex = load_from_disk(&mut surface, Path::new(png_filename)).expect("texture loading");
+
+    // set the uniform interface to our type so that we can read textures from the shader
+    let (program, _) =
+        Program::<Semantics, (), ShaderInterface>::from_strings(None, VS, None, FS).expect("program creation");
+
+    let mut tess = TessBuilder::new(&mut surface)
+        .add_vertices(vertices)
+        .set_mode(Mode::TriangleFan)
+        .build()
+        .unwrap();
+
+    let mut back_buffer = Framebuffer::back_buffer(surface.size());
+    let mut frame = 0;
+    let mut i = 0;
+
+    'app: loop {
+        for event in surface.poll_events() {
+            match event {
+                WindowEvent::Close | WindowEvent::Key(Key::Escape, _, Action::Release, _) => break 'app,
+
+                WindowEvent::FramebufferSize(width, height) => {
+                    back_buffer = Framebuffer::back_buffer([width as u32, height as u32]);
+                }
+
+                _ => (),
+            }
+        }
+
+        {
+            let mut slice = tess
+                .as_slice_mut()
+                .unwrap();
+
+            anm_runner.run_frame();
+            fill_vertices_ptr(sprite.clone(), slice.as_mut_ptr());
+        }
+
+        // here, we need to bind the pipeline variable; it will enable us to bind the texture to the GPU
+        // and use it in the shader
+        surface
+            .pipeline_builder()
+            .pipeline(&back_buffer, [0., 0., 0., 0.], |pipeline, shd_gate| {
+                // bind our fancy texture to the GPU: it gives us a bound texture we can use with the shader
+                let bound_tex = pipeline.bind_texture(&tex);
+
+                shd_gate.shade(&program, |rdr_gate, iface| {
+                    // update the texture; strictly speaking, this update doesn’t do much: it just tells the GPU
+                    // to use the texture passed as argument (no allocation or copy is performed)
+                    iface.color_map.update(&bound_tex);
+                    //let mvp = ortho_2d(0., 384., 448., 0.);
+                    let proj = perspective(0.5235987755982988, 384. / 448., 101010101./2010101., 101010101./10101.);
+                    let view = setup_camera(0., 0., 1.);
+                    let mvp = view * proj;
+                    //println!("{:#?}", mvp);
+                    // TODO: check how to pass by reference.
+                    iface.mvp.update(*mvp.borrow_inner());
+
+                    rdr_gate.render(RenderState::default(), |tess_gate| {
+                        // render the tessellation to the surface the regular way and let the vertex shader’s
+                        // magic do the rest!
+                        tess_gate.render(&mut surface, (&tess).into());
+                    });
+                });
+            });
+
+        surface.swap_buffers();
+    }
+}
+
+fn fill_vertices_ptr(sprite: Rc<RefCell<Sprite>>, vertices: *mut Vertex) {
+    let mut fake_vertices = unsafe { std::mem::transmute::<*mut Vertex, &mut [FakeVertex; 4]>(vertices) };
+    sprite.borrow().fill_vertices(&mut fake_vertices);
+}
+
+fn fill_vertices(sprite: Rc<RefCell<Sprite>>, vertices: &mut [Vertex; 4]) {
+    let mut fake_vertices = unsafe { std::mem::transmute::<&mut [Vertex; 4], &mut [FakeVertex; 4]>(vertices) };
+    sprite.borrow().fill_vertices(&mut fake_vertices);
+}
+
+fn load_from_disk(surface: &mut GlfwSurface, path: &Path) -> Option<Texture<Flat, Dim2, RGB>> {
+    // load the texture into memory as a whole bloc (i.e. no streaming)
+    match image::open(&path) {
+        Ok(img) => {
+            let (width, height) = img.dimensions();
+            let texels = img
+                .pixels()
+                .map(|(x, y, rgb)| (rgb[0], rgb[1], rgb[2]))
+                .collect::<Vec<_>>();
+
+            // create the luminance texture; the third argument is the number of mipmaps we want (leave it
+            // to 0 for now) and the latest is a the sampler to use when sampling the texels in the
+            // shader (we’ll just use the default one)
+            let tex =
+                Texture::new(surface, [width, height], 0, &Sampler::default()).expect("luminance texture creation");
+
+            // the first argument disables mipmap generation (we don’t care so far)
+            tex.upload(GenMipmaps::No, &texels);
+
+            Some(tex)
+        }
+
+        Err(e) => {
+            eprintln!("cannot open image {}: {}", path.display(), e);
+            None
+        }
+    }
+}
--- a/src/th06/anm0.rs
+++ b/src/th06/anm0.rs
@@ -76,6 +76,12 @@ impl Anm0 {
         assert_eq!(anm0.len(), 1);
         Ok(anm0[0].clone())
     }
+
+    /// TODO
+    pub fn inv_size(&self) -> (f32, f32) {
+        let (x, y) = self.size;
+        (1. / x as f32, 1. / y as f32)
+    }
 }
 
 fn parse_name(i: &[u8], is_present: bool) -> IResult<&[u8], String> {
--- a/src/th06/anm0_vm.rs
+++ b/src/th06/anm0_vm.rs
@@ -7,9 +7,22 @@ use crate::th06::anm0::{
     Instruction,
 };
 use crate::th06::interpolator::{Interpolator1, Interpolator2, Interpolator3, Formula};
+use crate::util::math::Mat4;
 use std::cell::RefCell;
 use std::rc::Rc;
 
+/// TODO
+#[repr(C)]
+#[derive(Debug)]
+pub struct Vertex {
+    /// XXX
+    pub pos: [i16; 3],
+    /// XXX
+    pub uv: [f32; 2],
+    /// XXX
+    pub color: [u8; 4],
+}
+
 /// Base visual element.
 #[derive(Debug, Clone, Default)]
 pub struct Sprite {
@@ -61,9 +74,88 @@ impl Sprite {
         }
     }
 
+    /// TODO
+    pub fn fill_vertices(&self, vertices: &mut [Vertex; 4]) {
+        let mut mat = Mat4::new([[-0.5, 0.5, 0.5, -0.5],
+                                 [-0.5, -0.5, 0.5, 0.5],
+                                 [0., 0., 0., 0.],
+                                 [1., 1., 1., 1.]]);
+
+        let [tx, ty, tw, th] = self.texcoords;
+        let [sx, sy] = self.rescale;
+        let width = if self.width_override > 0. { self.width_override } else { tw * sx };
+        let height = if self.height_override > 0. { self.height_override } else { th * sy };
+
+        mat.scale2d(width, height);
+        if self.mirrored {
+            mat.flip();
+        }
+
+        let [rx, ry, mut rz] = self.rotations_3d;
+        if self.automatic_orientation {
+            rz += std::f32::consts::PI / 2. - self.angle;
+        } else if self.force_rotation {
+            rz += self.angle;
+        }
+
+        if rx != 0. {
+            mat.rotate_x(-rx);
+        }
+        if ry != 0. {
+            mat.rotate_y(ry);
+        }
+        if rz != 0. {
+            mat.rotate_z(-rz);
+        }
+
+        if self.allow_dest_offset {
+            mat.translate(self.dest_offset);
+        }
+        if self.corner_relative_placement {
+            mat.translate_2d(width / 2., height / 2.);
+        }
+
+        let mat = mat.borrow_inner();
+        vertices[0].pos[0] = mat[0][0] as i16;
+        vertices[0].pos[1] = mat[1][0] as i16;
+        vertices[0].pos[2] = mat[2][0] as i16;
+        vertices[1].pos[0] = mat[0][1] as i16;
+        vertices[1].pos[1] = mat[1][1] as i16;
+        vertices[1].pos[2] = mat[2][1] as i16;
+        vertices[2].pos[0] = mat[0][2] as i16;
+        vertices[2].pos[1] = mat[1][2] as i16;
+        vertices[2].pos[2] = mat[2][2] as i16;
+        vertices[3].pos[0] = mat[0][3] as i16;
+        vertices[3].pos[1] = mat[1][3] as i16;
+        vertices[3].pos[2] = mat[2][3] as i16;
+
+        // XXX: don’t clone here.
+        let (x_1, y_1) = self.anm.clone().unwrap().inv_size();
+        let [tox, toy] = self.texoffsets;
+        let left = tx * x_1 + tox;
+        let right = (tx + tw) * x_1 + tox;
+        let bottom = ty * y_1 + toy;
+        let top = (ty + th) * y_1 + toy;
+
+        vertices[0].uv[0] = left;
+        vertices[0].uv[1] = bottom;
+        vertices[1].uv[0] = right;
+        vertices[1].uv[1] = bottom;
+        vertices[2].uv[0] = right;
+        vertices[2].uv[1] = top;
+        vertices[3].uv[0] = left;
+        vertices[3].uv[1] = top;
+
+        vertices[0].color = self.color;
+        vertices[1].color = self.color;
+        vertices[2].color = self.color;
+        vertices[3].color = self.color;
+    }
+
     /// Update sprite values from the interpolators.
     pub fn update(&mut self) {
         self.frame += 1;
+        self.corner_relative_placement = true;
 
         let [sax, say, saz] = self.rotations_speed_3d;
         if sax != 0. || say != 0. || saz != 0. {
new file mode 100644
--- /dev/null
+++ b/src/util/math.rs
@@ -0,0 +1,202 @@
+//! Various helpers to deal with vectors and matrices.
+
+/// A 4×4 f32 matrix type.
+pub struct Mat4 {
+    inner: [[f32; 4]; 4]
+}
+
+impl Mat4 {
+    /// Create a new matrix from a set of 16 f32.
+    pub fn new(inner: [[f32; 4]; 4]) -> Mat4 {
+        Mat4 {
+            inner
+        }
+    }
+
+    fn zero() -> Mat4 {
+        Mat4 {
+            inner: [[0.; 4]; 4]
+        }
+    }
+
+    fn identity() -> Mat4 {
+        Mat4 {
+            inner: [[1., 0., 0., 0.],
+                    [0., 1., 0., 0.],
+                    [0., 0., 1., 0.],
+                    [0., 0., 0., 1.]]
+        }
+    }
+
+    /// Immutably borrow the array of f32 inside this matrix.
+    pub fn borrow_inner(&self) -> &[[f32; 4]; 4] {
+        &self.inner
+    }
+
+    /// Scale the matrix in 2D.
+    pub fn scale2d(&mut self, x: f32, y: f32) {
+        for i in 0..4 {
+            self.inner[0][i] *= x;
+            self.inner[1][i] *= y;
+        }
+    }
+
+    /// Flip the matrix.
+    pub fn flip(&mut self) {
+        for i in 0..4 {
+            self.inner[0][i] = -self.inner[0][i];
+        }
+    }
+
+    /// Rotate the matrix around its x angle (in radians).
+    pub fn rotate_x(&mut self, angle: f32) {
+        let mut lines: [f32; 8] = [0.; 8];
+        let cos_a = angle.cos();
+        let sin_a = angle.sin();
+        for i in 0..4 {
+            lines[    i] = self.inner[0][i];
+            lines[4 + i] = self.inner[1][i];
+        }
+        for i in 0..4 {
+            self.inner[1][i] = cos_a * lines[i] - sin_a * lines[4+i];
+            self.inner[2][i] = sin_a * lines[i] + cos_a * lines[4+i];
+        }
+    }
+
+    /// Rotate the matrix around its y angle (in radians).
+    pub fn rotate_y(&mut self, angle: f32) {
+        let mut lines: [f32; 8] = [0.; 8];
+        let cos_a = angle.cos();
+        let sin_a = angle.sin();
+        for i in 0..4 {
+            lines[    i] = self.inner[0][i];
+            lines[4 + i] = self.inner[2][i];
+        }
+        for i in 0..4 {
+            self.inner[0][i] =  cos_a * lines[i] + sin_a * lines[4+i];
+            self.inner[2][i] = -sin_a * lines[i] + cos_a * lines[4+i];
+        }
+    }
+
+    /// Rotate the matrix around its z angle (in radians).
+    pub fn rotate_z(&mut self, angle: f32) {
+        let mut lines: [f32; 8] = [0.; 8];
+        let cos_a = angle.cos();
+        let sin_a = angle.sin();
+        for i in 0..4 {
+            lines[    i] = self.inner[0][i];
+            lines[4 + i] = self.inner[1][i];
+        }
+        for i in 0..4 {
+            self.inner[0][i] = cos_a * lines[i] - sin_a * lines[4+i];
+            self.inner[1][i] = sin_a * lines[i] + cos_a * lines[4+i];
+        }
+    }
+
+    /// Translate the matrix by a 3D offset.
+    pub fn translate(&mut self, offset: [f32; 3]) {
+        let mut item: [f32; 3] = [0.; 3];
+        for i in 0..3 {
+            item[i] = self.inner[3][i] * offset[i];
+        }
+        for i in 0..3 {
+            for j in 0..4 {
+                self.inner[i][j] += item[i];
+            }
+        }
+    }
+
+    /// Translate the matrix by a 2D offset.
+    pub fn translate_2d(&mut self, x: f32, y: f32) {
+        let offset = [x, y, 0.];
+        self.translate(offset);
+    }
+}
+
+impl std::ops::Mul<Mat4> for Mat4 {
+    type Output = Mat4;
+    fn mul(self, rhs: Mat4) -> Mat4 {
+        let mut tmp = Mat4::zero();
+        for i in 0..4 {
+            for j in 0..4 {
+                for k in 0..4 {
+                    tmp.inner[i][j] += self.inner[i][k] * rhs.inner[k][j];
+                }
+            }
+        }
+        tmp
+    }
+}
+
+/// Create an orthographic projection matrix.
+pub fn ortho_2d(left: f32, right: f32, bottom: f32, top: f32) -> Mat4 {
+    let mut mat = Mat4::identity();
+    mat.inner[0][0] = 2. / (right - left);
+    mat.inner[1][1] = 2. / (top - bottom);
+    mat.inner[2][2] = -1.;
+    mat.inner[3][0] = -(right + left) / (right - left);
+    mat.inner[3][1] = -(top + bottom) / (top - bottom);
+    mat
+}
+
+/// Setup a camera view matrix.
+pub fn setup_camera(dx: f32, dy: f32, dz: f32) -> Mat4 {
+    // Some explanations on the magic constants:
+    // 192. = 384. / 2. = width / 2.
+    // 224. = 448. / 2. = height / 2.
+    // 835.979370 = 224./math.tan(math.radians(15)) = (height/2.)/math.tan(math.radians(fov/2))
+    // This is so that objects on the (O, x, y) plane use pixel coordinates
+    look_at([192., 224., -835.979370 * dz], [192. + dx, 224. - dy, 0.], [0., -1., 0.])
+}
+
+/// Creates a perspective projection matrix.
+pub fn perspective(fov_y: f32, aspect: f32, z_near: f32, z_far: f32) -> Mat4 {
+    let top = (fov_y / 2.).tan() * z_near;
+    let bottom = -top;
+    let left = -top * aspect;
+    let right = top * aspect;
+
+    let mut mat = Mat4::identity();
+    mat.inner[0][0] = (2. * z_near) / (right - left);
+    mat.inner[1][1] = (2. * z_near) / (top - bottom);
+    mat.inner[2][2] = -(z_far + z_near) / (z_far - z_near);
+    mat.inner[2][3] = -1.;
+    mat.inner[3][2] = -(2. * z_far * z_near) / (z_far - z_near);
+    mat.inner[3][3] = 0.;
+    mat
+}
+
+type Vec3 = [f32; 3];
+
+fn look_at(eye: Vec3, center: Vec3, up: Vec3) -> Mat4 {
+    let f = normalize(sub(center, eye));
+    let u = normalize(up);
+    let s = normalize(cross(f, u));
+    let u = cross(s, f);
+
+    Mat4::new([[s[0], u[0], -f[0], 0.],
+               [s[1], u[1], -f[1], 0.],
+               [s[2], u[2], -f[2], 0.],
+               [-dot(s, eye), -dot(u, eye), dot(f, eye), 1.]])
+}
+
+fn sub(a: Vec3, b: Vec3) -> Vec3 {
+    [a[0] - b[0],
+     a[1] - b[1],
+     a[2] - b[2]]
+}
+
+fn normalize(vec: Vec3) -> Vec3 {
+    let normal = 1. / (vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]).sqrt();
+    [vec[0] * normal, vec[1] * normal, vec[2] * normal]
+}
+
+fn cross(a: Vec3, b: Vec3) -> Vec3 {
+    [a[1] * b[2] - b[1] * a[2],
+     a[2] * b[0] - b[2] * a[0],
+     a[0] * b[1] - b[0] * a[1]]
+}
+
+fn dot(a: Vec3, b: Vec3) -> f32 {
+    a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
+}
--- a/src/util/mod.rs
+++ b/src/util/mod.rs
@@ -2,6 +2,7 @@
 
 pub mod bitstream;
 pub mod lzss;
+pub mod math;
 
 #[cfg(test)]
 use std::io;