comparison examples/anmrenderer.rs @ 643:01849ffd0180

Add an anmrenderer binary.
author Emmanuel Gil Peyrot <linkmauve@linkmauve.fr>
date Fri, 02 Aug 2019 20:24:45 +0200
parents
children f983a4c98410
comparison
equal deleted inserted replaced
642:9e40bd5cc26d 643:01849ffd0180
1 use image::GenericImageView;
2 use luminance::context::GraphicsContext;
3 use luminance::framebuffer::Framebuffer;
4 use luminance::pipeline::BoundTexture;
5 use luminance::pixel::{RGB, Floating};
6 use luminance::render_state::RenderState;
7 use luminance::shader::program::{Program, Uniform};
8 use luminance::tess::{Mode, TessBuilder};
9 use luminance::texture::{Dim2, Flat, Sampler, Texture, GenMipmaps};
10 use luminance_derive::{Semantics, Vertex, UniformInterface};
11 use luminance_glfw::event::{Action, Key, WindowEvent};
12 use luminance_glfw::surface::{GlfwSurface, Surface, WindowDim, WindowOpt};
13 use touhou::th06::anm0::Anm0;
14 use touhou::th06::anm0_vm::{AnmRunner, Sprite, Vertex as FakeVertex};
15 use touhou::util::math::{perspective, setup_camera};
16 use std::cell::RefCell;
17 use std::fs::File;
18 use std::io::{BufReader, Read};
19 use std::rc::Rc;
20 use std::env;
21 use std::path::Path;
22
23 const VS: &str = r#"
24 in ivec3 in_position;
25 in vec2 in_texcoord;
26 in uvec4 in_color;
27
28 uniform mat4 mvp;
29
30 out vec2 texcoord;
31 out vec4 color;
32
33 void main()
34 {
35 gl_Position = mvp * vec4(vec3(in_position), 1.0);
36 texcoord = vec2(in_texcoord);
37
38 // Normalized from the u8 being passed.
39 color = vec4(in_color) / 255.;
40 }
41 "#;
42
43 const FS: &str = r#"
44 in vec2 texcoord;
45 in vec4 color;
46
47 uniform sampler2D color_map;
48
49 out vec4 frag_color;
50
51 void main()
52 {
53 frag_color = texture(color_map, texcoord) * color;
54 }
55 "#;
56
57 #[derive(Clone, Copy, Debug, Eq, PartialEq, Semantics)]
58 pub enum Semantics {
59 #[sem(name = "in_position", repr = "[i16; 3]", wrapper = "VertexPosition")]
60 Position,
61
62 #[sem(name = "in_texcoord", repr = "[f32; 2]", wrapper = "VertexTexcoord")]
63 Texcoord,
64
65 #[sem(name = "in_color", repr = "[u8; 4]", wrapper = "VertexColor")]
66 Color,
67 }
68
69 #[repr(C)]
70 #[derive(Clone, Copy, Debug, PartialEq, Vertex)]
71 #[vertex(sem = "Semantics")]
72 struct Vertex {
73 pos: VertexPosition,
74 uv: VertexTexcoord,
75 rgba: VertexColor,
76 }
77
78 #[derive(UniformInterface)]
79 struct ShaderInterface {
80 // the 'static lifetime acts as “anything” here
81 color_map: Uniform<&'static BoundTexture<'static, Flat, Dim2, Floating>>,
82
83 #[uniform(name = "mvp")]
84 mvp: Uniform<[[f32; 4]; 4]>,
85 }
86
87 fn main() {
88 // Parse arguments.
89 let args: Vec<_> = env::args().collect();
90 if args.len() != 4 {
91 eprintln!("Usage: {} <ANM file> <PNG file> <script number>", args[0]);
92 return;
93 }
94 let anm_filename = &args[1];
95 let png_filename = &args[2];
96 let script: u8 = args[3].parse().expect("number");
97
98 // Open the ANM file.
99 let file = File::open(anm_filename).unwrap();
100 let mut file = BufReader::new(file);
101 let mut buf = vec![];
102 file.read_to_end(&mut buf).unwrap();
103 let anm0 = Anm0::from_slice(&buf).unwrap();
104
105 if !anm0.scripts.contains_key(&script) {
106 eprintln!("This anm0 doesn’t contain a script named {}.", script);
107 return;
108 }
109
110 // Create the sprite.
111 let sprite = Rc::new(RefCell::new(Sprite::new(0., 0.)));
112
113 // Create the AnmRunner from the ANM and the sprite.
114 let mut anm_runner = AnmRunner::new(&anm0, script, sprite.clone(), 0);
115
116 assert_eq!(std::mem::size_of::<Vertex>(), std::mem::size_of::<FakeVertex>());
117 let mut vertices: [Vertex; 4] = unsafe { std::mem::uninitialized() };
118 fill_vertices(sprite.clone(), &mut vertices);
119
120 let mut surface = GlfwSurface::new(WindowDim::Windowed(384, 448), "Touhou", WindowOpt::default()).unwrap();
121
122 // Open the image atlas matching this ANM.
123 println!("{} {}", anm0.first_name, png_filename);
124 let tex = load_from_disk(&mut surface, Path::new(png_filename)).expect("texture loading");
125
126 // set the uniform interface to our type so that we can read textures from the shader
127 let (program, _) =
128 Program::<Semantics, (), ShaderInterface>::from_strings(None, VS, None, FS).expect("program creation");
129
130 let mut tess = TessBuilder::new(&mut surface)
131 .add_vertices(vertices)
132 .set_mode(Mode::TriangleFan)
133 .build()
134 .unwrap();
135
136 let mut back_buffer = Framebuffer::back_buffer(surface.size());
137 let mut frame = 0;
138 let mut i = 0;
139
140 'app: loop {
141 for event in surface.poll_events() {
142 match event {
143 WindowEvent::Close | WindowEvent::Key(Key::Escape, _, Action::Release, _) => break 'app,
144
145 WindowEvent::FramebufferSize(width, height) => {
146 back_buffer = Framebuffer::back_buffer([width as u32, height as u32]);
147 }
148
149 _ => (),
150 }
151 }
152
153 {
154 let mut slice = tess
155 .as_slice_mut()
156 .unwrap();
157
158 anm_runner.run_frame();
159 fill_vertices_ptr(sprite.clone(), slice.as_mut_ptr());
160 }
161
162 // here, we need to bind the pipeline variable; it will enable us to bind the texture to the GPU
163 // and use it in the shader
164 surface
165 .pipeline_builder()
166 .pipeline(&back_buffer, [0., 0., 0., 0.], |pipeline, shd_gate| {
167 // bind our fancy texture to the GPU: it gives us a bound texture we can use with the shader
168 let bound_tex = pipeline.bind_texture(&tex);
169
170 shd_gate.shade(&program, |rdr_gate, iface| {
171 // update the texture; strictly speaking, this update doesn’t do much: it just tells the GPU
172 // to use the texture passed as argument (no allocation or copy is performed)
173 iface.color_map.update(&bound_tex);
174 //let mvp = ortho_2d(0., 384., 448., 0.);
175 let proj = perspective(0.5235987755982988, 384. / 448., 101010101./2010101., 101010101./10101.);
176 let view = setup_camera(0., 0., 1.);
177 let mvp = view * proj;
178 //println!("{:#?}", mvp);
179 // TODO: check how to pass by reference.
180 iface.mvp.update(*mvp.borrow_inner());
181
182 rdr_gate.render(RenderState::default(), |tess_gate| {
183 // render the tessellation to the surface the regular way and let the vertex shader’s
184 // magic do the rest!
185 tess_gate.render(&mut surface, (&tess).into());
186 });
187 });
188 });
189
190 surface.swap_buffers();
191 }
192 }
193
194 fn fill_vertices_ptr(sprite: Rc<RefCell<Sprite>>, vertices: *mut Vertex) {
195 let mut fake_vertices = unsafe { std::mem::transmute::<*mut Vertex, &mut [FakeVertex; 4]>(vertices) };
196 sprite.borrow().fill_vertices(&mut fake_vertices);
197 }
198
199 fn fill_vertices(sprite: Rc<RefCell<Sprite>>, vertices: &mut [Vertex; 4]) {
200 let mut fake_vertices = unsafe { std::mem::transmute::<&mut [Vertex; 4], &mut [FakeVertex; 4]>(vertices) };
201 sprite.borrow().fill_vertices(&mut fake_vertices);
202 }
203
204 fn load_from_disk(surface: &mut GlfwSurface, path: &Path) -> Option<Texture<Flat, Dim2, RGB>> {
205 // load the texture into memory as a whole bloc (i.e. no streaming)
206 match image::open(&path) {
207 Ok(img) => {
208 let (width, height) = img.dimensions();
209 let texels = img
210 .pixels()
211 .map(|(x, y, rgb)| (rgb[0], rgb[1], rgb[2]))
212 .collect::<Vec<_>>();
213
214 // create the luminance texture; the third argument is the number of mipmaps we want (leave it
215 // to 0 for now) and the latest is a the sampler to use when sampling the texels in the
216 // shader (we’ll just use the default one)
217 let tex =
218 Texture::new(surface, [width, height], 0, &Sampler::default()).expect("luminance texture creation");
219
220 // the first argument disables mipmap generation (we don’t care so far)
221 tex.upload(GenMipmaps::No, &texels);
222
223 Some(tex)
224 }
225
226 Err(e) => {
227 eprintln!("cannot open image {}: {}", path.display(), e);
228 None
229 }
230 }
231 }