Mercurial > touhou
diff examples/anmrenderer.rs @ 643:01849ffd0180
Add an anmrenderer binary.
author | Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> |
---|---|
date | Fri, 02 Aug 2019 20:24:45 +0200 |
parents | |
children | f983a4c98410 |
line wrap: on
line diff
new file mode 100644 --- /dev/null +++ b/examples/anmrenderer.rs @@ -0,0 +1,231 @@ +use image::GenericImageView; +use luminance::context::GraphicsContext; +use luminance::framebuffer::Framebuffer; +use luminance::pipeline::BoundTexture; +use luminance::pixel::{RGB, Floating}; +use luminance::render_state::RenderState; +use luminance::shader::program::{Program, Uniform}; +use luminance::tess::{Mode, TessBuilder}; +use luminance::texture::{Dim2, Flat, Sampler, Texture, GenMipmaps}; +use luminance_derive::{Semantics, Vertex, UniformInterface}; +use luminance_glfw::event::{Action, Key, WindowEvent}; +use luminance_glfw::surface::{GlfwSurface, Surface, WindowDim, WindowOpt}; +use touhou::th06::anm0::Anm0; +use touhou::th06::anm0_vm::{AnmRunner, Sprite, Vertex as FakeVertex}; +use touhou::util::math::{perspective, setup_camera}; +use std::cell::RefCell; +use std::fs::File; +use std::io::{BufReader, Read}; +use std::rc::Rc; +use std::env; +use std::path::Path; + +const VS: &str = r#" +in ivec3 in_position; +in vec2 in_texcoord; +in uvec4 in_color; + +uniform mat4 mvp; + +out vec2 texcoord; +out vec4 color; + +void main() +{ + gl_Position = mvp * vec4(vec3(in_position), 1.0); + texcoord = vec2(in_texcoord); + + // Normalized from the u8 being passed. + color = vec4(in_color) / 255.; +} +"#; + +const FS: &str = r#" +in vec2 texcoord; +in vec4 color; + +uniform sampler2D color_map; + +out vec4 frag_color; + +void main() +{ + frag_color = texture(color_map, texcoord) * color; +} +"#; + +#[derive(Clone, Copy, Debug, Eq, PartialEq, Semantics)] +pub enum Semantics { + #[sem(name = "in_position", repr = "[i16; 3]", wrapper = "VertexPosition")] + Position, + + #[sem(name = "in_texcoord", repr = "[f32; 2]", wrapper = "VertexTexcoord")] + Texcoord, + + #[sem(name = "in_color", repr = "[u8; 4]", wrapper = "VertexColor")] + Color, +} + +#[repr(C)] +#[derive(Clone, Copy, Debug, PartialEq, Vertex)] +#[vertex(sem = "Semantics")] +struct Vertex { + pos: VertexPosition, + uv: VertexTexcoord, + rgba: VertexColor, +} + +#[derive(UniformInterface)] +struct ShaderInterface { + // the 'static lifetime acts as “anything” here + color_map: Uniform<&'static BoundTexture<'static, Flat, Dim2, Floating>>, + + #[uniform(name = "mvp")] + mvp: Uniform<[[f32; 4]; 4]>, +} + +fn main() { + // Parse arguments. + let args: Vec<_> = env::args().collect(); + if args.len() != 4 { + eprintln!("Usage: {} <ANM file> <PNG file> <script number>", args[0]); + return; + } + let anm_filename = &args[1]; + let png_filename = &args[2]; + let script: u8 = args[3].parse().expect("number"); + + // Open the ANM file. + let file = File::open(anm_filename).unwrap(); + let mut file = BufReader::new(file); + let mut buf = vec![]; + file.read_to_end(&mut buf).unwrap(); + let anm0 = Anm0::from_slice(&buf).unwrap(); + + if !anm0.scripts.contains_key(&script) { + eprintln!("This anm0 doesn’t contain a script named {}.", script); + return; + } + + // Create the sprite. + let sprite = Rc::new(RefCell::new(Sprite::new(0., 0.))); + + // Create the AnmRunner from the ANM and the sprite. + let mut anm_runner = AnmRunner::new(&anm0, script, sprite.clone(), 0); + + assert_eq!(std::mem::size_of::<Vertex>(), std::mem::size_of::<FakeVertex>()); + let mut vertices: [Vertex; 4] = unsafe { std::mem::uninitialized() }; + fill_vertices(sprite.clone(), &mut vertices); + + let mut surface = GlfwSurface::new(WindowDim::Windowed(384, 448), "Touhou", WindowOpt::default()).unwrap(); + + // Open the image atlas matching this ANM. + println!("{} {}", anm0.first_name, png_filename); + let tex = load_from_disk(&mut surface, Path::new(png_filename)).expect("texture loading"); + + // set the uniform interface to our type so that we can read textures from the shader + let (program, _) = + Program::<Semantics, (), ShaderInterface>::from_strings(None, VS, None, FS).expect("program creation"); + + let mut tess = TessBuilder::new(&mut surface) + .add_vertices(vertices) + .set_mode(Mode::TriangleFan) + .build() + .unwrap(); + + let mut back_buffer = Framebuffer::back_buffer(surface.size()); + let mut frame = 0; + let mut i = 0; + + 'app: loop { + for event in surface.poll_events() { + match event { + WindowEvent::Close | WindowEvent::Key(Key::Escape, _, Action::Release, _) => break 'app, + + WindowEvent::FramebufferSize(width, height) => { + back_buffer = Framebuffer::back_buffer([width as u32, height as u32]); + } + + _ => (), + } + } + + { + let mut slice = tess + .as_slice_mut() + .unwrap(); + + anm_runner.run_frame(); + fill_vertices_ptr(sprite.clone(), slice.as_mut_ptr()); + } + + // here, we need to bind the pipeline variable; it will enable us to bind the texture to the GPU + // and use it in the shader + surface + .pipeline_builder() + .pipeline(&back_buffer, [0., 0., 0., 0.], |pipeline, shd_gate| { + // bind our fancy texture to the GPU: it gives us a bound texture we can use with the shader + let bound_tex = pipeline.bind_texture(&tex); + + shd_gate.shade(&program, |rdr_gate, iface| { + // update the texture; strictly speaking, this update doesn’t do much: it just tells the GPU + // to use the texture passed as argument (no allocation or copy is performed) + iface.color_map.update(&bound_tex); + //let mvp = ortho_2d(0., 384., 448., 0.); + let proj = perspective(0.5235987755982988, 384. / 448., 101010101./2010101., 101010101./10101.); + let view = setup_camera(0., 0., 1.); + let mvp = view * proj; + //println!("{:#?}", mvp); + // TODO: check how to pass by reference. + iface.mvp.update(*mvp.borrow_inner()); + + rdr_gate.render(RenderState::default(), |tess_gate| { + // render the tessellation to the surface the regular way and let the vertex shader’s + // magic do the rest! + tess_gate.render(&mut surface, (&tess).into()); + }); + }); + }); + + surface.swap_buffers(); + } +} + +fn fill_vertices_ptr(sprite: Rc<RefCell<Sprite>>, vertices: *mut Vertex) { + let mut fake_vertices = unsafe { std::mem::transmute::<*mut Vertex, &mut [FakeVertex; 4]>(vertices) }; + sprite.borrow().fill_vertices(&mut fake_vertices); +} + +fn fill_vertices(sprite: Rc<RefCell<Sprite>>, vertices: &mut [Vertex; 4]) { + let mut fake_vertices = unsafe { std::mem::transmute::<&mut [Vertex; 4], &mut [FakeVertex; 4]>(vertices) }; + sprite.borrow().fill_vertices(&mut fake_vertices); +} + +fn load_from_disk(surface: &mut GlfwSurface, path: &Path) -> Option<Texture<Flat, Dim2, RGB>> { + // load the texture into memory as a whole bloc (i.e. no streaming) + match image::open(&path) { + Ok(img) => { + let (width, height) = img.dimensions(); + let texels = img + .pixels() + .map(|(x, y, rgb)| (rgb[0], rgb[1], rgb[2])) + .collect::<Vec<_>>(); + + // create the luminance texture; the third argument is the number of mipmaps we want (leave it + // to 0 for now) and the latest is a the sampler to use when sampling the texels in the + // shader (we’ll just use the default one) + let tex = + Texture::new(surface, [width, height], 0, &Sampler::default()).expect("luminance texture creation"); + + // the first argument disables mipmap generation (we don’t care so far) + tex.upload(GenMipmaps::No, &texels); + + Some(tex) + } + + Err(e) => { + eprintln!("cannot open image {}: {}", path.display(), e); + None + } + } +}