diff src/util/math.rs @ 643:01849ffd0180

Add an anmrenderer binary.
author Emmanuel Gil Peyrot <linkmauve@linkmauve.fr>
date Fri, 02 Aug 2019 20:24:45 +0200
parents
children
line wrap: on
line diff
new file mode 100644
--- /dev/null
+++ b/src/util/math.rs
@@ -0,0 +1,202 @@
+//! Various helpers to deal with vectors and matrices.
+
+/// A 4×4 f32 matrix type.
+pub struct Mat4 {
+    inner: [[f32; 4]; 4]
+}
+
+impl Mat4 {
+    /// Create a new matrix from a set of 16 f32.
+    pub fn new(inner: [[f32; 4]; 4]) -> Mat4 {
+        Mat4 {
+            inner
+        }
+    }
+
+    fn zero() -> Mat4 {
+        Mat4 {
+            inner: [[0.; 4]; 4]
+        }
+    }
+
+    fn identity() -> Mat4 {
+        Mat4 {
+            inner: [[1., 0., 0., 0.],
+                    [0., 1., 0., 0.],
+                    [0., 0., 1., 0.],
+                    [0., 0., 0., 1.]]
+        }
+    }
+
+    /// Immutably borrow the array of f32 inside this matrix.
+    pub fn borrow_inner(&self) -> &[[f32; 4]; 4] {
+        &self.inner
+    }
+
+    /// Scale the matrix in 2D.
+    pub fn scale2d(&mut self, x: f32, y: f32) {
+        for i in 0..4 {
+            self.inner[0][i] *= x;
+            self.inner[1][i] *= y;
+        }
+    }
+
+    /// Flip the matrix.
+    pub fn flip(&mut self) {
+        for i in 0..4 {
+            self.inner[0][i] = -self.inner[0][i];
+        }
+    }
+
+    /// Rotate the matrix around its x angle (in radians).
+    pub fn rotate_x(&mut self, angle: f32) {
+        let mut lines: [f32; 8] = [0.; 8];
+        let cos_a = angle.cos();
+        let sin_a = angle.sin();
+        for i in 0..4 {
+            lines[    i] = self.inner[0][i];
+            lines[4 + i] = self.inner[1][i];
+        }
+        for i in 0..4 {
+            self.inner[1][i] = cos_a * lines[i] - sin_a * lines[4+i];
+            self.inner[2][i] = sin_a * lines[i] + cos_a * lines[4+i];
+        }
+    }
+
+    /// Rotate the matrix around its y angle (in radians).
+    pub fn rotate_y(&mut self, angle: f32) {
+        let mut lines: [f32; 8] = [0.; 8];
+        let cos_a = angle.cos();
+        let sin_a = angle.sin();
+        for i in 0..4 {
+            lines[    i] = self.inner[0][i];
+            lines[4 + i] = self.inner[2][i];
+        }
+        for i in 0..4 {
+            self.inner[0][i] =  cos_a * lines[i] + sin_a * lines[4+i];
+            self.inner[2][i] = -sin_a * lines[i] + cos_a * lines[4+i];
+        }
+    }
+
+    /// Rotate the matrix around its z angle (in radians).
+    pub fn rotate_z(&mut self, angle: f32) {
+        let mut lines: [f32; 8] = [0.; 8];
+        let cos_a = angle.cos();
+        let sin_a = angle.sin();
+        for i in 0..4 {
+            lines[    i] = self.inner[0][i];
+            lines[4 + i] = self.inner[1][i];
+        }
+        for i in 0..4 {
+            self.inner[0][i] = cos_a * lines[i] - sin_a * lines[4+i];
+            self.inner[1][i] = sin_a * lines[i] + cos_a * lines[4+i];
+        }
+    }
+
+    /// Translate the matrix by a 3D offset.
+    pub fn translate(&mut self, offset: [f32; 3]) {
+        let mut item: [f32; 3] = [0.; 3];
+        for i in 0..3 {
+            item[i] = self.inner[3][i] * offset[i];
+        }
+        for i in 0..3 {
+            for j in 0..4 {
+                self.inner[i][j] += item[i];
+            }
+        }
+    }
+
+    /// Translate the matrix by a 2D offset.
+    pub fn translate_2d(&mut self, x: f32, y: f32) {
+        let offset = [x, y, 0.];
+        self.translate(offset);
+    }
+}
+
+impl std::ops::Mul<Mat4> for Mat4 {
+    type Output = Mat4;
+    fn mul(self, rhs: Mat4) -> Mat4 {
+        let mut tmp = Mat4::zero();
+        for i in 0..4 {
+            for j in 0..4 {
+                for k in 0..4 {
+                    tmp.inner[i][j] += self.inner[i][k] * rhs.inner[k][j];
+                }
+            }
+        }
+        tmp
+    }
+}
+
+/// Create an orthographic projection matrix.
+pub fn ortho_2d(left: f32, right: f32, bottom: f32, top: f32) -> Mat4 {
+    let mut mat = Mat4::identity();
+    mat.inner[0][0] = 2. / (right - left);
+    mat.inner[1][1] = 2. / (top - bottom);
+    mat.inner[2][2] = -1.;
+    mat.inner[3][0] = -(right + left) / (right - left);
+    mat.inner[3][1] = -(top + bottom) / (top - bottom);
+    mat
+}
+
+/// Setup a camera view matrix.
+pub fn setup_camera(dx: f32, dy: f32, dz: f32) -> Mat4 {
+    // Some explanations on the magic constants:
+    // 192. = 384. / 2. = width / 2.
+    // 224. = 448. / 2. = height / 2.
+    // 835.979370 = 224./math.tan(math.radians(15)) = (height/2.)/math.tan(math.radians(fov/2))
+    // This is so that objects on the (O, x, y) plane use pixel coordinates
+    look_at([192., 224., -835.979370 * dz], [192. + dx, 224. - dy, 0.], [0., -1., 0.])
+}
+
+/// Creates a perspective projection matrix.
+pub fn perspective(fov_y: f32, aspect: f32, z_near: f32, z_far: f32) -> Mat4 {
+    let top = (fov_y / 2.).tan() * z_near;
+    let bottom = -top;
+    let left = -top * aspect;
+    let right = top * aspect;
+
+    let mut mat = Mat4::identity();
+    mat.inner[0][0] = (2. * z_near) / (right - left);
+    mat.inner[1][1] = (2. * z_near) / (top - bottom);
+    mat.inner[2][2] = -(z_far + z_near) / (z_far - z_near);
+    mat.inner[2][3] = -1.;
+    mat.inner[3][2] = -(2. * z_far * z_near) / (z_far - z_near);
+    mat.inner[3][3] = 0.;
+    mat
+}
+
+type Vec3 = [f32; 3];
+
+fn look_at(eye: Vec3, center: Vec3, up: Vec3) -> Mat4 {
+    let f = normalize(sub(center, eye));
+    let u = normalize(up);
+    let s = normalize(cross(f, u));
+    let u = cross(s, f);
+
+    Mat4::new([[s[0], u[0], -f[0], 0.],
+               [s[1], u[1], -f[1], 0.],
+               [s[2], u[2], -f[2], 0.],
+               [-dot(s, eye), -dot(u, eye), dot(f, eye), 1.]])
+}
+
+fn sub(a: Vec3, b: Vec3) -> Vec3 {
+    [a[0] - b[0],
+     a[1] - b[1],
+     a[2] - b[2]]
+}
+
+fn normalize(vec: Vec3) -> Vec3 {
+    let normal = 1. / (vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]).sqrt();
+    [vec[0] * normal, vec[1] * normal, vec[2] * normal]
+}
+
+fn cross(a: Vec3, b: Vec3) -> Vec3 {
+    [a[1] * b[2] - b[1] * a[2],
+     a[2] * b[0] - b[2] * a[0],
+     a[0] * b[1] - b[0] * a[1]]
+}
+
+fn dot(a: Vec3, b: Vec3) -> f32 {
+    a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
+}