Mercurial > touhou
diff src/util/math.rs @ 643:01849ffd0180
Add an anmrenderer binary.
author | Emmanuel Gil Peyrot <linkmauve@linkmauve.fr> |
---|---|
date | Fri, 02 Aug 2019 20:24:45 +0200 |
parents | |
children |
line wrap: on
line diff
new file mode 100644 --- /dev/null +++ b/src/util/math.rs @@ -0,0 +1,202 @@ +//! Various helpers to deal with vectors and matrices. + +/// A 4×4 f32 matrix type. +pub struct Mat4 { + inner: [[f32; 4]; 4] +} + +impl Mat4 { + /// Create a new matrix from a set of 16 f32. + pub fn new(inner: [[f32; 4]; 4]) -> Mat4 { + Mat4 { + inner + } + } + + fn zero() -> Mat4 { + Mat4 { + inner: [[0.; 4]; 4] + } + } + + fn identity() -> Mat4 { + Mat4 { + inner: [[1., 0., 0., 0.], + [0., 1., 0., 0.], + [0., 0., 1., 0.], + [0., 0., 0., 1.]] + } + } + + /// Immutably borrow the array of f32 inside this matrix. + pub fn borrow_inner(&self) -> &[[f32; 4]; 4] { + &self.inner + } + + /// Scale the matrix in 2D. + pub fn scale2d(&mut self, x: f32, y: f32) { + for i in 0..4 { + self.inner[0][i] *= x; + self.inner[1][i] *= y; + } + } + + /// Flip the matrix. + pub fn flip(&mut self) { + for i in 0..4 { + self.inner[0][i] = -self.inner[0][i]; + } + } + + /// Rotate the matrix around its x angle (in radians). + pub fn rotate_x(&mut self, angle: f32) { + let mut lines: [f32; 8] = [0.; 8]; + let cos_a = angle.cos(); + let sin_a = angle.sin(); + for i in 0..4 { + lines[ i] = self.inner[0][i]; + lines[4 + i] = self.inner[1][i]; + } + for i in 0..4 { + self.inner[1][i] = cos_a * lines[i] - sin_a * lines[4+i]; + self.inner[2][i] = sin_a * lines[i] + cos_a * lines[4+i]; + } + } + + /// Rotate the matrix around its y angle (in radians). + pub fn rotate_y(&mut self, angle: f32) { + let mut lines: [f32; 8] = [0.; 8]; + let cos_a = angle.cos(); + let sin_a = angle.sin(); + for i in 0..4 { + lines[ i] = self.inner[0][i]; + lines[4 + i] = self.inner[2][i]; + } + for i in 0..4 { + self.inner[0][i] = cos_a * lines[i] + sin_a * lines[4+i]; + self.inner[2][i] = -sin_a * lines[i] + cos_a * lines[4+i]; + } + } + + /// Rotate the matrix around its z angle (in radians). + pub fn rotate_z(&mut self, angle: f32) { + let mut lines: [f32; 8] = [0.; 8]; + let cos_a = angle.cos(); + let sin_a = angle.sin(); + for i in 0..4 { + lines[ i] = self.inner[0][i]; + lines[4 + i] = self.inner[1][i]; + } + for i in 0..4 { + self.inner[0][i] = cos_a * lines[i] - sin_a * lines[4+i]; + self.inner[1][i] = sin_a * lines[i] + cos_a * lines[4+i]; + } + } + + /// Translate the matrix by a 3D offset. + pub fn translate(&mut self, offset: [f32; 3]) { + let mut item: [f32; 3] = [0.; 3]; + for i in 0..3 { + item[i] = self.inner[3][i] * offset[i]; + } + for i in 0..3 { + for j in 0..4 { + self.inner[i][j] += item[i]; + } + } + } + + /// Translate the matrix by a 2D offset. + pub fn translate_2d(&mut self, x: f32, y: f32) { + let offset = [x, y, 0.]; + self.translate(offset); + } +} + +impl std::ops::Mul<Mat4> for Mat4 { + type Output = Mat4; + fn mul(self, rhs: Mat4) -> Mat4 { + let mut tmp = Mat4::zero(); + for i in 0..4 { + for j in 0..4 { + for k in 0..4 { + tmp.inner[i][j] += self.inner[i][k] * rhs.inner[k][j]; + } + } + } + tmp + } +} + +/// Create an orthographic projection matrix. +pub fn ortho_2d(left: f32, right: f32, bottom: f32, top: f32) -> Mat4 { + let mut mat = Mat4::identity(); + mat.inner[0][0] = 2. / (right - left); + mat.inner[1][1] = 2. / (top - bottom); + mat.inner[2][2] = -1.; + mat.inner[3][0] = -(right + left) / (right - left); + mat.inner[3][1] = -(top + bottom) / (top - bottom); + mat +} + +/// Setup a camera view matrix. +pub fn setup_camera(dx: f32, dy: f32, dz: f32) -> Mat4 { + // Some explanations on the magic constants: + // 192. = 384. / 2. = width / 2. + // 224. = 448. / 2. = height / 2. + // 835.979370 = 224./math.tan(math.radians(15)) = (height/2.)/math.tan(math.radians(fov/2)) + // This is so that objects on the (O, x, y) plane use pixel coordinates + look_at([192., 224., -835.979370 * dz], [192. + dx, 224. - dy, 0.], [0., -1., 0.]) +} + +/// Creates a perspective projection matrix. +pub fn perspective(fov_y: f32, aspect: f32, z_near: f32, z_far: f32) -> Mat4 { + let top = (fov_y / 2.).tan() * z_near; + let bottom = -top; + let left = -top * aspect; + let right = top * aspect; + + let mut mat = Mat4::identity(); + mat.inner[0][0] = (2. * z_near) / (right - left); + mat.inner[1][1] = (2. * z_near) / (top - bottom); + mat.inner[2][2] = -(z_far + z_near) / (z_far - z_near); + mat.inner[2][3] = -1.; + mat.inner[3][2] = -(2. * z_far * z_near) / (z_far - z_near); + mat.inner[3][3] = 0.; + mat +} + +type Vec3 = [f32; 3]; + +fn look_at(eye: Vec3, center: Vec3, up: Vec3) -> Mat4 { + let f = normalize(sub(center, eye)); + let u = normalize(up); + let s = normalize(cross(f, u)); + let u = cross(s, f); + + Mat4::new([[s[0], u[0], -f[0], 0.], + [s[1], u[1], -f[1], 0.], + [s[2], u[2], -f[2], 0.], + [-dot(s, eye), -dot(u, eye), dot(f, eye), 1.]]) +} + +fn sub(a: Vec3, b: Vec3) -> Vec3 { + [a[0] - b[0], + a[1] - b[1], + a[2] - b[2]] +} + +fn normalize(vec: Vec3) -> Vec3 { + let normal = 1. / (vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]).sqrt(); + [vec[0] * normal, vec[1] * normal, vec[2] * normal] +} + +fn cross(a: Vec3, b: Vec3) -> Vec3 { + [a[1] * b[2] - b[1] * a[2], + a[2] * b[0] - b[2] * a[0], + a[0] * b[1] - b[0] * a[1]] +} + +fn dot(a: Vec3, b: Vec3) -> f32 { + a[0] * b[0] + a[1] * b[1] + a[2] * b[2] +}